Download Lecture 11

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EEL6935 Advanced MEMS (Spring 2005)
Instructor: Dr. Huikai Xie
Active Devices -- BJT & MOSFET
Lecture 11
„
Agenda:
Ê
Cross-section
Ê
N/P/N Bipolar Junction
Transistor (BJT)
Ê
n-channel Metal Oxide
Semiconductor Field
Effect Transistor
(n-channel MOSFET)
Amplifier Basics
–
–
–
–
EEL6935 Advanced MEMS
„
Device models
Current mirrors
Single-stage amplifiers
Operational amplifier configurations
2005 H. Xie
2/14/2005
1
EEL6935 Advanced MEMS
2005 H. Xie
2
MOSFET Small-signal Model
Active Devices -- BJT & MOSFET
„
MOSFET Small-signal Equivalent Circuit
Cgd
Active
region
G
D
vgs
Cgs
gmvgs
rds
Cdb
S
„
Common-emitter configuration
Ê
„
iC vs. vCE DC characteristics with
base-emitter voltage (or base
current) as parameter
Other configurations are commonbase and common-collector
EEL6935 Advanced MEMS
2005 H. Xie
„
Common-source configuration
Ê
„
iD vs. vDS DC characteristics with
gate-to-source voltage as parameter
Other configurations are commongate and common-drain
3
EEL6935 Advanced MEMS
2005 H. Xie
4
Device Model Summary
Device Model Summary
Johns and Martin, Analog Integrated Circuit Design, p.56-60
EEL6935 Advanced MEMS
2005 H. Xie
5
EEL6935 Advanced MEMS
2005 H. Xie
Device Model Summary
EEL6935 Advanced MEMS
2005 H. Xie
6
Device Model Summary
7
EEL6935 Advanced MEMS
2005 H. Xie
8
Device Model Summary
Operating Point
RL
vDS
vD
Active
region
Operating point
iD = (vD-vDS)/RL
Johns and Martin, Analog Integrated Circuit Design, p.56-60
EEL6935 Advanced MEMS
2005 H. Xie
9
EEL6935 Advanced MEMS
2005 H. Xie
Diode-connected Transistor
10
Basic Current Mirror
vD
ID
RL
Active
region
Iin
RD
Active
region
vDS
Iout
Q2
Q1
Operating point
iD = (vD-vDS)/RL
iD = (vD-vDS)/RL
iD = (vD-vDS)/RL
vGS = vDS
‰
‰
‰
EEL6935 Advanced MEMS
2005 H. Xie
• ID stays almost constant for a
given VGS for a wide range of VDS
Current can be adjusted by RL
Current can tune VDS
Sizing transistor to adjust VDs,
with ID fixed
•
•
•
•
Q1 and Q2 are identical
Iin is set by RD
VGS1 (and VGS2) are set by RD
Thus Iout = Iin
• Iout can exactly match Iin or can be a
fraction of it by adjusting the ratio
between (W1/L1) and (W2/L2)
ID =
11
EEL6935 Advanced MEMS
2005 H. Xie
µn Cox  W 
2
 L  (VGS − Vtn )
 
2
12
Basic Single-Stage Amplifiers
Basic Single-Stage Amplifiers
‰ Common-source Amplifier
‰ Common-drain Amplifier
Q2
Q1
Vin
ID
Q3
Ibias
Ibias
Vin
Q3
ID =
•
•
•
•
µn Cox  W 
2
 L  (VGS − Vtn )
 
•
•
•
•
2005 H. Xie
Q2
Q1
2
High input impedance
Active load
Passive load for low-gain, high frequency
Most popular
EEL6935 Advanced MEMS
Vout
Vout
13
EEL6935 Advanced MEMS
Source follower
Voltage buffer
Voltage gain ~ 1 but < 1
Current gain
2005 H. Xie
Basic Single-Stage Amplifiers
14
High-Quality Current Mirrors
‰ Cascode Current Mirror
‰ Common-gate Amplifier
‰ Wilson Current Mirror
Iout
Q2
Q1
Ibias
Vout
Vbias
Q3
Q3
Q4
Q1
Q2
Iout
rout
Q3
Q4
Q1
Q2
rout
Vin
• High output impedance
• rout = (rds2gm4)rds4
• Impedance increased by
10x to 100x
• Reduce output swings
• Small input impedance
• Active load
• Current amplification
EEL6935 Advanced MEMS
2005 H. Xie
15
EEL6935 Advanced MEMS
2005 H. Xie
•
•
•
•
•
High output impedance
Shunt-series feedback
rout = rds4 (rds1gm1)/2
Reduce output swings
Q3 is not required
16
Cascode Gain Stage
‰ Telescopic-cascode Amplifier
‰ Folded-cascode Amplifier
Vout
Q2
Vin
Q3
Q2
Q1
CL
Ibias2
+
Vin
-
Vbias
Vout
AV = gm1zout
zout = rout // 1/(sCL)
2005 H. Xie
rout = rds2 // rds4
17
EEL6935 Advanced MEMS
2005 H. Xie
General Amplifiers
„
dvO
dvI
At operating point (known also as Quiescent point)
18
Operational Amplifiers
Amplifier Saturation
Ê hard limit at power supply limits
Ê Jargon: “rail” = power supply
– rail-to-rail
Amplifier Nonlinearity
AV =
CL
Q2
Ibias
• Allows same dc level for
input and output signals
• Slower due to p-channel
• Limit the voltage across the
input transistor
Q1
CL
• Common-source plus
common-gate
• High gain from single stage
„
rout
Vout
Vin
Q1
EEL6935 Advanced MEMS
Q4
Ibias1
Ibias
Vbias
Differential Pair
„
Operational Amplifiers
Ê
Basic building block for analog signal
processing circuits
– First integrated circuit operational
amplifier, µ709, made by Fairchild
Semiconductor in 1960s followed by the
µ741.
– Consists of active transistors, resistors,
and limited number of capacitors
– Approximated by single-pole frequency
response
vO (t ) = VO + vo (t )
Ê
Three stages
– Differential amplifier stage
Power supply
Inverting input
– Amplifies difference between two inputs
– High-gain amplifier stage
– Output amplifier stage
Non-inverting input
vI (t ) = VI + vi (t )
2005 H. Xie
Power supply
Ref. Senturia, Microsystem Design, p. 382.
Ref. Sedra and Smith, Microelectronic Circuits, p. 16.
EEL6935 Advanced MEMS
Output
19
EEL6935 Advanced MEMS
2005 H. Xie
20
Operational Amplifiers
Operational Amplifiers
„
Non-inverting Amplifier
„
Vo
R
= 1+ 1
Vs
R2
„
„
Integrator
„
Differentiator
Transimpedance Amplifier
Inverting Amplifier
Vo
R
=− 2
Vs
R1
EEL6935 Advanced MEMS
2005 H. Xie
vo = −
vo = − R1 I s
21
1
Vs (t )dt
R1C ∫
EEL6935 Advanced MEMS
2005 H. Xie
vo = − R1C
dvs
dt
22
Related documents