Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Prof.AnneBracy CS3410 ComputerScience CornellUniversity The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. See:P&HAppendix B.2andB.3(Also,seeB.1) 1 FromSwitchestoLogicGatestoLogicCircuits Transistors(electronicswitch) LogicGates • TruthTables LogicCircuits • IdentityLaws • FromTruthTablestoCircuits(SumofProducts) LogicCircuitMinimization • AlgebraicManipulations • Karnaugh Maps 2 Transistors: • Youtube videofromlastweek https://www.youtube.com/watch?v=IcrBqCFLHIY 3 Source Gate Insulator Drain Source Gate Drain — Insulator - + + + + + + + + - + + + - - - + + + P-type P-type N-type - - - - - - - - - - + + channelcreated + + + + + + P-type - + + + - +- - + ++ P-type P-type N-type - - - - - - - - - - Off On - N-TypeSilicon:negativefree-carriers(electrons) P-TypeSilicon:positivefree-carriers(holes) P-Transistor:negativechargeongategenerateselectricfieldthat createsa(+charged)p-channelconnectingsource&drain N-Transistor:workstheoppositeway Metal-OxideSemiconductor(Gate-Insulator-Silicon) ComplementaryMOS=CMOStechnologyusesbothp- &n-type transistors 4 N-type Off/Open 0 gate P-type Off/Open gate 1 On/Closed 1 On/Closed 0 Gate input controls whether current can flow between the other two terminals or not. Hint: the “o” bubble of the p-type tells you that this gate wants a 0 to be turned on 5 Logicgatesareconstructedbycombiningtransistorsin complementaryarrangements Combinep&n transistorstomakeaNOTgate: CMOS Inverter : power source (1) power source (1) — p-gate input output n-gate ground (0) power source (1) + p-gate closes 0 1 n-gate stays open — ground (0) 6 p-gate stays open 0 1 + n-gate closes ground (0) Vsupply (akalogic1) in out • Function: NOT • Symbol: out in • Truth Table: (ground islogic0) In 0 1 Out 1 0 7 Vsupply A Vsupply B B A out • Function: • Symbol: a b out • Truth Table: A 0 1 0 1 B out 0 0 1 1 8 Vsupply • Function: NOR • Symbol: A B out A B a b out • Truth Table: A B out 0 0 1 1 0 0 0 1 0 1 1 0 NANDandNORareuniversal • Canimplementany functionwithNANDorjustNORgates • usefulformanufacturing NOT: a AND: a b OR: a b 11 Hidecomplexitythroughsimpleabstractions • Simplicity – Boxdiagramrepresentsinputsandoutputs • Complexity – HidesunderlyingNMOS- andPMOS-transistorsandatomic interactions Vdd in a out out b Vss in d out a d b out 12 FromSwitchestoLogicGatestoLogicCircuits Transistors(electronicswitch) LogicGates • TruthTables LogicCircuits • IdentityLaws • FromTruthTablestoCircuits(SumofProducts) LogicCircuitMinimization • AlgebraicManipulations • Karnaugh Maps 13 • Digitalcircuitthateitherallows signaltopassthroughitornot • Usedtobuildlogicfunctions • Sevenbasiclogicgates: AND, OR, NOT, George Boole,(1815-1864) NAND (notAND), NOR (notOR), Didyouknow? XOR GeorgeBooleInventoroftheidea XNOR (notXOR) oflogicgates.Hewasbornin Lincoln,Englandandhewastheson ofashoemakerinalowclassfamily. 14 NOT: A A Out 0 1 1 0 A B Out AND: OR: XOR:. A B A B A B A B Out NAND: A B 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 A B Out 0 0 1 0 1 0 1 1 0 0 1 1 1 0 A B Out 0 0 0 0 1 1 1 0 1 1 A B Out NOR: A B A B Out XNOR: A B 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 Fillinthetruthtable,giventhefollowingLogic CircuitmadefromLogicAND,OR,andNOTgates. Whatdoesthelogiccircuitdo? a b Out a b Out 16 Fillinthetruthtable,giventhefollowingLogic CircuitmadefromLogicAND,OR,andNOTgates. Whatdoesthelogiccircuitdo? a b d 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Out a d Out b 19 FromSwitchestoLogicGatestoLogicCircuits Transistors(electronicswitch) LogicGates • TruthTables LogicCircuits • FromTruthTablestoCircuits(SumofProducts) • IdentityLaws LogicCircuitMinimization • AlgebraicManipulations • Karnaugh Maps 21 GivenaLogicfunctionà createaLogicCircuitthat implementstheLogicFunction… 22 Howtoimplementadesiredlogicfunction? a 0 0 0 0 1 1 1 1 b 0 0 1 1 0 0 1 1 c out minterm 1) Write minterms 0 0 abc 2) Write sumofproducts: ORofallmintermswhereout=1 1 1 abc out=abc +abc +abc 0 0 abc 1 1 abc a b 0 0 abc c out 1 1 abc 0 0 abc 1 0 abc Any combinationalcircuitcanbe implementedin twolevelsoflogic(ignoringinverters) 23 NOT: =ā =!a=¬a AND: =a·b=a&b=a∧ b NAND: OR: NOR: =a+b=a|b=a∨ b XOR: =a⊕ b=ab+āb (a • b) =!(a&b)=¬ (a∧ b) (a + b) =!(a|b)=¬ (a∨ b) XNOR: (a b) =ab +ab LogicEquations • Constants:true=1,false=0 • Variables:a,b,out,… • Operators(above):AND,OR,NOT,etc. 24 Identitiesusefulformanipulatinglogicequations • Foroptimization&easeofimplementation a+0= a a+1= 1 a+ā= 1 a·0= 0 a·1= a a·ā= 0 25 Identitiesusefulformanipulatinglogicequations • Foroptimization&easeofimplementation A (a + b) = a • b (ab) = a + b B A B ↔ ↔ A B A B a+ab=a a(b+c)=ab +ac a(b + c) = a + b • c 26 FromSwitchestoLogicGatestoLogicCircuits Transistors(electronicswitch) LogicGates • TruthTables LogicCircuits • IdentityLaws • FromTruthTablestoCircuits(SumofProducts) LogicCircuitMinimization • AlgebraicManipulations • Karnaugh Maps 27 ImplementtheLogicFunction… withtheminimumnumberoflogicgates Fewergates:Acheaper($$$)circuit! Howtostandardizethisminimizing? 28 a+0=a a+1=1 a+ā =1 a·0=0 a·1=a a·ā =0 Minimizethislogicequation: (a+b)(a+c) = a+ab=a a(b+c)=ab +ac (a + b) = a • b (ab) = a + b a(b + c) = a + b • c 29 circuits↔truthtables↔equations • Example:(a+b)(a+c)=a+bc a b c 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 31 Howdoesonefindthemostefficientequation? – Manipulatealgebraicallyuntil…? – UseKarnaugh Maps (optimizevisually) – Useasoftwareoptimizer Forlargecircuits – Decomposition&reuseofbuildingblocks 33 c a b c out 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 out = abc + abc + abc + abc ab 00 011110 0 0 0 0 1 1 1 1 0 Sum of minterms yields K-maps identify which inputs are relevant to the output 1 34 c ab 00 011110 0 0 0 0 1 1 1 1 0 1 (1) Circle the 1’s (see below) (2) Each circle is a logical component of the final equation = ab" + a"c Rules: • Usefewestcirclesnecessarytocoverall1’s • Circlesmustcoveronly1’s • Circlesspanrectanglesofsizepowerof2(1,2,4,8…) • Circlesshouldbeaslargeaspossible(allcirclesof1?) • CirclesmaywraparoundedgesofK-Map • 1maybecircledmultipletimesifthatmeansfewer circles 35 c c ab 00 01 1110 0 0 1 1 1 1 0 0 1 0 Minterms can overlap out = bc" + ac" + ab ab 00 01 1110 0 1 1 1 1 1 0 0 1 0 Minterms can span 2, 4, 8 or more cells out = c" + ab 36 ab cd 00 01 1110 00 0 0 0 0 01 1 0 0 1 11 1 0 0 1 10 0 0 0 0 Themapwrapsaround out=b"d ab cd 00 011110 00 1 0 0 1 01 0 0 0 0 11 0 0 0 0 10 1 0 0 1 out=b" d" 37 ab cd 00 011110 00 0 0 0 0 01 1 x x x 11 1 x x 1 10 0 0 0 0 ab “Don’tcare”valuescanbe interpretedindividuallyin whateverwayisconvenient • assumeallx’s=1 à out=d 00 1 0 0 x 01 0 x x 0 • assumemiddlex’s=0 (ignorethem) • assume4th columnx=1 11 0 x x 0 10 1 0 0 1 " d" à out=b cd 00 011110 38 • Binary—twosymbols:true andfalse—isthebasis ofLogicDesign • MorethanoneLogicCircuitcanimplementsame Logicfunction.UseAlgebra(Identities)orTruth Tablestoshowequivalence. • Anylogicfunctioncanbeimplementedas“sumof products”.Karnaugh Mapsminimizenumberof gates. 39 Mostmoderndevicesmadeofbillionsoftransistors • Youwillbuildaprocessorinthiscourse! • Moderntransistorsmadefromsemiconductormaterials • Transistorsusedtomakelogicgatesandlogiccircuits Wecannowimplementanylogiccircuit • UseP- &N-transistorstoimplementNAND/NORgates • UseNANDorNORgatestoimplementthelogiccircuit • Efficiently: useK-mapstofindrequiredminimalterms 40