Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
FMY4A Transistors Power management (dual transistors) FMY4A zExternal dimensions (Unit : mm) ROHM : SMT5 EIAJ : SC-74A Tr1 (5) 0to0.1 0.3to0.6 (5) 0.8 0.15 2.8 FMY4A (4) 2.9 (3) (4) (2) (1) 1.6 zEquivalent circuits (3) 0.95 0.95 1.9 FMY4A 0.3 zFeature 1) Both a 2SA1037AK chip and 2SC2412K chip in a EMT or UMT or SMT package. Each lead has same dimensions Tr2 (2) (1) zAbsolute maximum ratings (Ta = 25°C) Parameter Symbol Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Collector power dissipation Junction temperature Storage temperature VCBO VCEO VEBO IC PC Tj Tstg ∗1 200mW per element must not be exceeded. Limits Tr1 −60 Tr2 60 −50 50 −6 7 −150 150 300 (TOTAL) 150 −55 to +150 Unit V V V mA mW °C °C ∗1 zPackage, marking, and packaging specifications Part No. FMY4A Package Marking Code Basic ordering unit (pieces) SMT5 Y4 T148 3000 Rev.A 1/4 FMY4A Transistors zElectrical characteristics (Ta=25°C) Tr1 (PNP) Parameter Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current transfer ratio Transition frequency Output capacitance Symbol Min. Typ. Max. Unit BVCBO BVCEO BVEBO −60 −50 −6 − − − 120 − − − − − − − − − − −0.1 −0.1 −0.5 560 V V V µA µA V − Cob − − 140 4 − 5 MHz pF Symbol Min. Typ. Max. Unit BVCBO BVCEO BVEBO VCE(sat) 60 50 7 − − − − − − − − − − − − 0.1 0.1 0.4 V V V µA µA V hFE 120 − 560 − fT − − 180 2 − 3.5 MHz pF ICBO IEBO VCE(sat) hFE fT ∗ Transition frequency of the device. Conditions IC = −50µA IC = −1mA IE = −50µA VCB = −60V VEB = −6V IC/IB = −50mA/−5mA VCE = −6V , IC = −1mA VCE = −12V , IE = 2mA , f = 100MHz VCB = −12V , IE = 0A , f = 1MHz ∗ Tr2 (NPN) Parameter Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current transfer ratio Transition frequency Output capacitance ICBO IEBO Cob ∗ Transition frequency of the device. Conditions IC = 50µA IC = 1mA IE = 50µA VCB = 60V VEB = 7V IC/IB = 50mA/5mA VCE = 6V , IC = 1mA VCE = 12V , IE = −2mA , f = 100MHz VCB = 12V , IE = 0A , f = 1MHz ∗ zElectrical characteristics curves PNP Tr −10 −5 −2 −1 −0.5 −0.2 −0.1 −10 VCE= −6V −0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6 BASE TO EMITTER VOLTAGE : VBE (V) Fig.1 Grounded emitter propagation characteristics −35.0 Ta=25˚C −31.5 −28.0 −8 −24.5 −21.0 −6 −17.5 −14.0 −4 −10.5 −7.0 −2 −3.5µA 0 −0.4 −0.8 −1.2 −1.6 IB=0 −2.0 COLLECTOR TO MITTER VOLTAGE : VCE (V) Fig.2 Grounded emitter output characteristics (Ι) −100 COLLECTOR CURRENT : IC (mA) −20 Ta=100˚C 25˚C −40˚C COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : Ic (mA) −50 −80 −60 Ta=25˚C −500 −450 −400 −350 −300 −250 −200 −150 −40 −100 −20 −50µA IB=0 0 −1 −2 −3 −4 −5 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.3 Grounded emitter output characteristics (ΙΙ) Rev.A 2/4 FMY4A 500 VCE= −5V −3V −1V Ta=25˚C Ta=100˚C 25˚C DC CURRENT GAIN : hFE DC CURRENT GAIN : hFE 500 200 100 −40˚C 200 100 50 50 −1 Ta=25˚C −0.5 −0.2 IC/IB=50 −0.1 20 10 −0.05 −2 −5 −10 −20 −0.2 −0.5 −1 −50 −100 1000 TRANSITION FREQUENCY : fT (MHz) −0.2 Ta=100˚C 25˚C −40˚C −0.1 −0.05 −0.2 −0.5 −1 −2 −5 −10 −20 500 200 100 50 −50 −100 0.5 1 2 5 10 20 50 100 EMITTER CURRENT : IE (mA) COLLECTOR CURRENT : IC (mA) Fig.7 Collector-emitter saturation voltage vs. collector current (II) −5 −10 −20 −50 −100 Fig.6 Collector-emitter saturation voltage vs. collector current (Ι) Ta=25˚C VCE= −12V lC/lB=10 −2 COLLECTOR CURRENT : IC (mA) Fig.5 DC current gain vs. collector current (ΙΙ) Fig.4 DC current gain vs. collector current (Ι) −0.5 −0.2 −0.5 −1 COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : IC (mA) −1 VCE= −6V −5 −10 −20 −50 −100 −2 COLLECTOR OUTPUT CAPACITANCE : Cob (pF) EMITTER INPUT CAPACITANCE : Cib (pF) −0.2 −0.5 −1 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) Transistors Fig.8 Gain bandwidth product vs. emitter current 20 Ta=25˚C f=1MHz IE=0A IC=0A Cib 10 Co b 5 2 −0.5 −1 −2 −5 −10 −20 COLLECTOR TO BASE VOLTAGE : VCB (V) EMITTER TO BASE VOLTAGE : VEB (V) Fig.9 Collector output capacitance vs. collector-base voltage Emitter inputcapacitance vs. emitter-base voltage NPN Tr 10 2 1 25°C −55°C 5 0.5 0.2 0.1 0 COLLECTOR CURRENT : IC (mA) 20 Ta=100°C COLLECTOR CURRENT : IC (mA) VCE=6V 0.50mA mA 0.45 A 0.40m 0.35mA Ta=25°C 80 0.30mA 0.25mA 60 0.20mA 0.15mA 40 0.10mA 20 0.05mA IB=0A 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 BASE TO EMITTER VOLTAGE : VBE (V) Fig.10 Grounded emitter propagation characteristics 0 0.4 0.8 1.2 1.6 2.0 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.11 Grounded emitter output characteristics ( Ι ) 10 COLLECTOR CURRENT : IC (mA) 100 50 30µA Ta=25°C 27µA 8 24µA 21µA 6 18µA 15µA 12µA 4 9µA 6µA 2 3µA 0 0 4 8 IB=0A 12 16 20 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.12 Grounded emitter output characteristics ( ΙΙ ) Rev.A 3/4 FMY4A VCE=5V 3V 1V 200 100 50 20 0.5 1 2 5 10 20 25°C 200 −55°C 100 50 20 10 0.2 50 100 200 2 5 10 20 50 100 200 COLLECTOR CURRENT : IC (mA) Fig.13 DC current gain vs. collector current ( Ι ) Fig.14 DC current gain vs. collector current ( ΙΙ ) 0.5 IC/IB=10 0.2 Ta=100°C 25°C −55°C 0.1 0.05 0.02 0.01 0.2 0.5 1 2 5 10 20 50 100 200 0.5 0.1 0.05 0.02 0.01 Ta=25°C f=1MHz IE=0A IC=0A 5 2 Co b 1 0.2 0.5 1 2 5 10 20 50 COLLECTOR TO BASE VOLTAGE : VCB (V) EMITTER TO BASE VOLTAGE : VEB (V) Fig.19 5 10 20 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage IC/IB=50 20 10 0.1 0.05 0.02 0.01 0.2 0.5 1 2 5 10 20 50 100 200 Ta=25°C VCE=6V 500 200 100 50 −0.5 −1 50 100 −2 −5 −10 −20 −50 −100 EMITTER CURRENT : IE (mA) Fig.17 Collector-emitter saturation voltage vs. collector current (ΙΙ) BASE COLLECTOR TIME CONSTANT : Cc·rbb' (ps) 20 Cib 2 0.2 COLLECTOR CURRENT : IC (mA) Fig.16 Collector-emitter saturation voltage vs. collector current ( Ι ) 10 0.5 1 Ta=25°C Fig.15 Collector-emitter saturation voltage vs. collector current Ta=100°C 25°C −55°C 0.2 0.5 COLLECTOR CURRENT : IC (mA) IC/IB=50 0.2 COLLECTOR CURRENT : IC (mA) COLLECTOR OUTPUT CAPACITANCE : Cob (pF) EMITTER INPUT CAPACITANCE : Cib (pF) 0.5 1 COLLECTOR CURRENT : IC (mA) COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) 10 0.2 VCE=5V Ta=100°C TRANSITION FREQUENCY : fT (MHz) 500 Ta=25°C DC CURRENT GAIN : hFE DC CURRENT GAIN : hFE 500 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) Transistors Fig.18 Gain bandwidth product vs. emitter current Ta=25°C f=32MHZ VCB=6V 200 100 50 20 10 −0.2 −0.5 −1 −2 −5 −10 EMITTER CURRENT : IE (mA) Fig.20 Base-collector time constant vs. emitter current Rev.A 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction. Appendix1-Rev1.1