Download Effective Action for Gravity and Dark Energy

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Effective Action for Gravity
and Dark Energy
Sang Pyo Kim
Kunsan Nat’l Univ.
COSMO/CosPA, Sept. 30, 2010
U. Tokyo
Outline
• Motivation
• Classical and Quantum Aspects of de
Sitter Space
• Polyakov’s Cosmic Laser
• Effective Action for Gravity
• Conclusion
Dark Energy Models
[Copeland, Sami, Tsujikawa, hep-th/0603057]
• Cosmological constant w/wo quantum gravity.
• Modified gravity: how to reconcile the QG scale with ?
– f(R) gravities
– DGP model
• Scalar field models: where do these fields come from?(origin)
– Quintessence
– K-essence
– Tachyon field
– Phantom (ghost) field
– Dilatonic dark energy
– Chaplygin gas
Vacuum Energy and 
• Vacuum energy of fundamental fields due to quantum
fluctuations (uncertainty principle):
– massive scalar:
4

1 cut d 3k
2
2
cut
 vac  
m

k

2 0 (2 )3
16 2
– Planck scale cut-off:

71
4

10
(
GeV
)
vac

 10  47 (GeV ) 4
– present value:   
8G
– order of 120 difference for the Planck scale cut-off and
order 40 for the QCD scale cut-off
– Casimir force from vacuum fluctuations is physical.
Why de Sitter Space in Cosmology?
• The Universe dominated by dark energy is an
asymptotically de Sitter space.
• CDM model is consistent with CMB data
(WMAP+ACT+)
• The Universe with  is a pure de Sitter space with the
Hubble constant H= (/3).
.
• The “cosmic laser” mechanism depletes curvature and
may help solving the cosmological constant problem
[Polyakov, NPB834(2010); NPB797(2008)].
• de Sitter/anti de Sitter spaces are spacetimes where
quantum effects, such as IR effects and vacuum
structure, may be better understood.
BD-Vacuum in de Sitter Spaces
• The quantum theory in dS spaces is still an issue of
controversy and debates since Chernikov and
Tagirov (1968):
-The Bunch-Davies vacuum (Euclidean vacuum, in/in-formalism) leads to the real effective action,
implying no particle production in any dimensions,
but exhibits a thermal state: Euclidean Green
function (KMS property of thermal Green function)
has the periodicity 1 / TdS  2 / H
-The BD vacuum respects the dS symmetry in the
same way the Minkowski vacuum respects the
Lorentz symmetry.
Classical de Sitter Spaces
• Global coordinates of (D=d+1) dimensional de Sitter
ds 2  dt 2  cosh 2 ( Ht )d 2d / H 2
embedded into (D+1) dimensional Minkowski
spacetime
 ab X a X b  1 / H 2 ,
ds 2   ab dX a dX b
have the O(D,1) symmetry.
• The Euclidean
 ab X a X b space
1 / H 2(Wick-rotated)
,
ds 2   ab dX a dX b
has the O(D+1) symmetry (maximally spacetime
symmetry).
BD-Vacuum in de Sitter Spaces
• BUT, in cosmology, an expanding (FRW) spacetime
2

dr
2
2
2
2
2
ds  dt  a (t )
 r d 2 
2
 1  kr

does not have a Euclidean counterpart for general
a(t).
The dS spaces are an exception:
1 Ht
1
a(t )  e , a(t )  cosh( Ht )
H
H
Further, particle production in the expanding FRW
spacetime [L. Parker, PR 183 (1969)] is a concpet
well accepted by GR community.
Polyakov’s Cosmic Laser
• Cosmic Lasers: particle production a la Schwinger
mechanism
-The in-/out-formalism (t = ) predicts particle
production only in even dimensions [Mottola, PRD 31
(1985); Bousso, PRD 65 (2002)].
-The in-/out-formalism is consistent with the
composition principle [Polyakov,NPB(2008),(2008)]: the
Feynman prescription for a free particle propagating
on a stable manifold
G ( x, x' )  P ( x , x ') e imL( P )
 dyG( x, y)G( y, x' )  
P ( x , x ')
L ( P )e
imL( P )


G ( x, x ' )
m
Radiation in de Sitter Spaces
• QFT in dS space: the time-component equation for
a massive scalar in dS
(t , )  a
d / 2
cosh( Ht )
(t ) uk ()k (t ); a 
H
k
 2uk ()  k 2uk ();
 (t )  Q (t ) (t )  0
k
k
k 2  l (l  d  1)
k
k
d (d  2)  a  d a
2
Qk (t )  m  2 
  
a
4
a 2 a
2
2
Radiation in de Sitter Spaces
• The Hamilton-Jacobi equation in complex time
k (t )  e iS
k
(t )
; S k (t )  
2
(

H
)
Qk ( z )dz; Qk (t )   2 
cosh 2 ( Ht )
d (d  2)
 dH 
2
  m 
 ;   l (l  d  1) 
4
 2 
2
2
2
k  k (t )  e
2
 2 Im S k ( t )
Stokes Phenomenon
• Four turning points
[figure adopted from Dumlu & Dunne,
PRL 104 (2010)]
e
Ht( a )
H
(H ) 2
 i
i
1
2


e
Ht( b )
H
(H ) 2
 i
i
1
2


• Hamilton-Jacobi
action

S k (t( a )  , t(b )  )  i
 
H
Radiation in de Sitter Spaces
• One may use the phase-integral approximation and
find the mean number of produced particles [SPK,
JHEP09(2010)054].
Nk  e
2 Im S ( I )
e
2 Im S ( II )
 2 cos(Re S ( I , II ))e
 Im S ( I )  Im S ( II )
 4 sin 2 ( (l  d / 2))e 2 / H
• The dS analog of Schwinger mechanism in QED: the
correspondence between two accelerations
(Hawking-Unruh effect)
qE
 H
m
RdS
12
Radiation in de Sitter Spaces
• The Stokes phenomenon explains why there is NO
particle production in odd dimensional de Sitter
spaces
- destructive interference between two Stokes’s
lines
-Polyakov intepreted this as reflectionless scattering
of KdV equation [NPB797(2008)].
• In even dimensional de Sitter spaces, two Stokes
lines contribute constructively, thus leading to de
Sitter radiation.
Vacuum Persistence
• Consistent with the one-loop effective action from
the in-/out-formalism in de Sitter spaces:
-the imaginary part is absent/present in odd/even
dimensions.
0, out | 0, in
2
e
2 ImW
e
VT  ln(1 N k )
k
• Does dS radiation imply the decay of vacuum energy
of the Universe?
-A solution for cosmological constant
problem[Polyakov]. Can it work?
Effective Action for Gravity
• Charged scalar field in curved spacetime
H ( x)  0,
H ( x)  D D  m2 , D     iqA ( x)
• Effective action in the Schwinger-DeWitt proper time integral

i
1
d
W    d x  g  d (is )
x | e isH | x'
0
2
(is )
im2 s

1
e
  d d x  g  d (is )
F ( x, x' ; is )
d /2
0
2 corrections to (gravity
is )( 4s)
• One-loop
1
1 2
1
1
;

f1  R, f 2 
R;  R 
R R

R R 
30
12
180
180
One-Loop Effective Action
• The in-/out-state formalism [Schwinger (51),
Nikishov (70), DeWitt (75), Ambjorn et al (83)]
eiW  e 
i dtd 3 xLeff
 0, out | 0, in
• The Bogoliubov transformation between the instate and the out-state:
ak,out   k,in ak,in   k,* inbk,in  U k ak,inU k
bk,out   k,inbk,in   k,* in ak, in  U k bk,inU k
One-Loop Effective Action
• The effective action for boson/fermion [SPK, Lee,
Yoon, PRD 78, 105013 (`08); PRD 82, 025015,
025016 (`10); ]
W  i ln 0, out | 0, in  i  ln  k*
k
• Sum of all one-loops with even number of external
gravitons
Effective Action for de Sitter
• de Sitter space with the metric
2
cosh
( Ht )
2
2
2
ds  dt 
d

d
H2
• Bogoliubov coefficients
(1  i )(i )
l 
, lZ0
(l  d / 2  i )(1  l  d / 2  i )
(1  i )(i )
m2 d 2
l 
, 

2
(l  d / 2)(1  l  d / 2)
H
4
Effective Action for dS
[SPK, arXiv:1008.0577]
• The Gamma-function Regularization
and the Residue Theorem
• The effective action per Hubble
volume and per Compton time
d 1
)mH d
2
Leff ( H ) 
(2 ) ( d 1) / 2
(

(d )
D
 l P
2 Im Leff ( H )  ln 1  N l ,
l 0

0
e s  cos(( 2l  d  1) s / 2)  cos( s / 2) 
ds

s 
sin( s / 2)

 sin  (l  d / 2) 
2

N l |  l |  
 sinh(  ) 
2
Effective Action for de Sitter
• The vacuum structure of de Sitter in the weak
curvature limit (H<<m)

R 
Leff ( RdS )  m 2 RdS  Cn  dS2 
m 
n 0
n 1
• The general relation holds between vacuum
persistence and mean number of produced pairs
0, out | 0, in
2
 e2 Im Leff ( H )  exp   (l  1) 2 ln(tanh 2 ( ))
l 0

No Quantum Hair for dS Space?
[SPK, arXiv:1008.0577]
• The effective action per Hubble volume and per
Compton time, for instance, in D=4
mH 3
Leff ( H ) 
(2 ) 2

 (l  1) P 
2
l 0

0
e s  cos((l  1) s)  cos( s / 2) 
ds

s 
sin( s / 2)

• Zeta-function regularization [Hawking, CMP 55
(1977)]

1
1
 ( z )   z ,  (2n)  0, n  Z  ,  (0)  
2
k 1 k
Leff ( H )  0
QED vs QG
QED
Schwinger
Mechanism
QCD
Unruh Effect
Pair Production
Black holes
Hawking Radiation
De Sitter/
Expanding universe
Conclusion
• The effective action for gravity may provide a clue
for the origin of .
• Does dS radiation imply the decay of vacuum
energy of the Universe? And is it a solver for
cosmological constant problem? [Polyakov]
• dS may not have a quantum hair at one-loop level
and be stable for linear perturbations.
• What is the vacuum structure at higher loops
and/or with interactions? (challenging question)