* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download ADA4420-6 数据手册DataSheet 下载
Integrating ADC wikipedia , lookup
Oscilloscope history wikipedia , lookup
Audio power wikipedia , lookup
Standing wave ratio wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
405-line television system wikipedia , lookup
Distributed element filter wikipedia , lookup
Surge protector wikipedia , lookup
Regenerative circuit wikipedia , lookup
Phase-locked loop wikipedia , lookup
Superheterodyne receiver wikipedia , lookup
Wien bridge oscillator wikipedia , lookup
Schmitt trigger wikipedia , lookup
Negative-feedback amplifier wikipedia , lookup
Power dividers and directional couplers wikipedia , lookup
Index of electronics articles wikipedia , lookup
Power MOSFET wikipedia , lookup
Wilson current mirror wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Tektronix analog oscilloscopes wikipedia , lookup
Two-port network wikipedia , lookup
Operational amplifier wikipedia , lookup
Transistor–transistor logic wikipedia , lookup
Valve audio amplifier technical specification wikipedia , lookup
Current mirror wikipedia , lookup
Power electronics wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Radio transmitter design wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Low Cost 6-Channel HD/SD Video Filter ADA4420-6 FEATURES FUNCTIONAL BLOCK DIAGRAM Sixth-order filters Transparent input sync tip clamp −1 dB bandwidth of 26 MHz typical for HD HD rejection @ 75 MHz: 48 dB typical NTSC differential gain: 0.19% NTSC differential phase: 0.76° Rail-to-rail outputs Low quiescent current: 32 mA typical Disable feature Output dc offset INSD1 ×1 SD ×2 ×1 SD ×2 ×1 SD ×2 ×1 HD ×2 ×1 HD ×2 ×1 HD ×2 OUTSD1 CLAMP INSD2 OUTSD2 CLAMP INSD3 DIS CLAMP INHD1 APPLICATIONS OUTSD3 OUTHD1 CLAMP INHD2 CLAMP INHD3 CLAMP ADA4420-6 GENERAL DESCRIPTION www.BDTIC.com/ADI The ADA4420-6 is a low cost video reconstruction filter specifically designed for consumer applications. It consists of six independent sixth-order Butterworth filters/buffers, three for standard definition (Y/C or CVBS) and three for high definition component signals (YPbPr or RGB). The ADA4420-6 operates from a single 5 V supply and has a low quiescent current of 32 mA, making it ideal for applications where power consumption is critical. A disable feature allows for further power conservation by reducing the supply current to less than 8 μA typical when the device is not in use. OUTHD2 OUTHD3 07532-001 Set-top boxes DVD players and recorders HDTVs Projectors Personal video recorders Figure 1. Each channel features a transparent sync tip clamp, allowing ac coupling of the inputs without requiring dc restoration. The output drivers on the ADA4420-6 have rail-to-rail output capabilities with 6 dB gain. A built-in offset of 250 mV allows the outputs to be dc-coupled, eliminating the need for large coupling capacitors. Each output is capable of driving two 75 Ω doubly terminated cables. The ADA4420-6 is available in a 16-lead QSOP and operates in the extended industrial temperature range of −40°C to +85°C. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved. ADA4420-6 TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................6 Applications ....................................................................................... 1 Test Circuits ........................................................................................9 General Description ......................................................................... 1 Applications Information .............................................................. 10 Functional Block Diagram .............................................................. 1 Overview ..................................................................................... 10 Revision History ............................................................................... 2 Disable ......................................................................................... 10 Specifications..................................................................................... 3 Input and Output Coupling ...................................................... 10 Absolute Maximum Ratings............................................................ 4 Printed Circuit Board (PCB) Layout ....................................... 10 Thermal Resistance ...................................................................... 4 Video Encoder Reconstruction Filter ...................................... 10 Maximum Power Dissipation ..................................................... 4 Outline Dimensions ....................................................................... 12 ESD Caution .................................................................................. 4 Ordering Guide .......................................................................... 12 Pin Configuration and Function Descriptions ............................. 5 REVISION HISTORY 8/08—Revision 0: Initial Version www.BDTIC.com/ADI Rev. 0 | Page 2 of 12 ADA4420-6 SPECIFICATIONS VS = 5 V, TA = 25°C, VO = 2.0 V p-p, RL = 150 Ω, dc-coupled inputs, ac-coupled outputs, unless otherwise noted. See Figure 17, Figure 18, and Figure 19 for the test circuits. Table 1. Parameter OVERALL PERFORMANCE DC Voltage Gain Input Voltage Range, All Inputs Output Voltage Range, All Outputs Linear Output Current per Channel Filter Input Bias Current SD CHANNEL DYNAMIC PERFORMANCE −1 dB Bandwidth −3 dB Bandwidth Out-of-Band Rejection Crosstalk Total Harmonic Distortion Signal-to-Noise Ratio Propagation Delay Group Delay Variation Differential Gain Differential Phase Test Conditions/Comments Min Typ Max Unit All channels 5.8 6.0 0 to 2.1 0.25 to 4.6 30 1 6.2 dB V V mA μA f = 27 MHz f = 1 MHz f = 1 MHz, VO = 1.4 V p-p, dc-coupled outputs f = 100 kHz to 6 MHz, unweighted 8.5 42 f = 100 kHz to 5 MHz NTSC; ac-coupled inputs, dc-coupled outputs; see Figure 18 NTSC; ac-coupled inputs, dc-coupled outputs; see Figure 18 8.6 10 45 −68 0.02 70 57 16 0.19 MHz MHz dB dB % dB ns ns % 0.76 Degrees www.BDTIC.com/ADI HD CHANNEL DYNAMIC PERFORMANCE −1 dB Bandwidth −3 dB Bandwidth Out-of-Band Rejection Crosstalk Total Harmonic Distortion Signal-to-Noise Ratio Propagation Delay Group Delay Variation DC CHARACTERISTICS Operating Voltage Quiescent Supply Current PSRR Output DC Offset DISABLE Assert Voltage DISABLE Assert Time DISABLE De-Assert Time DISABLE Input Bias Current Input-to-Output Isolation f = 100 kHz to 30 MHz 26 31 48 −68 0.57 66 15 11 Active, DIS = 1 Disabled, DIS = 0 HD channel, referred to output SD channel, referred to output All channels 4.75 to 5.25 32 7 41 45 250 f = 75 MHz f = 1 MHz f = 10 MHz, VO = 1.4 V p-p, dc-coupled outputs f = 100 kHz to 30 MHz, unweighted Disabled, DIS = 0 Disabled, DIS = 0, f = 5 MHz Rev. 0 | Page 3 of 12 27 43 35 40 135 20 450 −6.8 −96 MHz MHz dB dB % dB ns ns 36 13 375 1.9 V mA μA dB dB mV V ns ns μA dB ADA4420-6 ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Supply Voltage Power Dissipation Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 10 sec) Junction Temperature Rating 5.5 V See Figure 2 −65°C to +125°C −40°C to +85°C 300°C 150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The power dissipated in the package (PD) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (VS) times the quiescent current (IS). The power dissipated due to load drive depends on the particular application. For each output, the power due to load drive is calculated by multiplying the load current by the associated voltage drop across the device. The power dissipated due to the loads is equal to the sum of the power dissipations due to each individual load. RMS voltages and currents must be used in these calculations. Airflow increases heat dissipation, effectively reducing θJA. Figure 2 shows the maximum power dissipation in the package vs. the ambient temperature for the 16-lead QSOP (105°C/W) on a JEDEC standard 4-layer board. θJA values are approximate. 2.0 1.8 MAXIMUM POWER DISSIPATION (W) THERMAL RESISTANCE θJA is specified for the device soldered to a high thermal conductivity 4-layer (2s2p) circuit board, as described in EIA/JESD 51-7. Table 3. 1.4 1.2 1.0 0.8 www.BDTIC.com/ADI θJA 105 θJC 23 Unit °C/W 0.6 0.4 0.2 MAXIMUM POWER DISSIPATION The maximum safe power dissipation in the ADA4420-6 package is limited by the associated rise in junction temperature (TJ) on the die. At approximately 150°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4420-6. Exceeding a junction temperature of 150°C for an extended time can result in changes in the silicon devices, potentially causing failure. 0 0 10 20 30 40 50 60 70 80 AMBIENT TEMPERATURE (°C) Figure 2. Maximum Power Dissipation vs. Ambient Temperature for a 4-Layer Board ESD CAUTION Rev. 0 | Page 4 of 12 90 100 07532-016 Package Type 16-Lead QSOP 1.6 ADA4420-6 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 16 OUTSD1 INSD2 2 15 OUTSD2 INSD3 3 14 OUTSD3 VCC 4 ADA4420-6 13 GND DIS 5 TOP VIEW (Not to Scale) 12 GND INHD1 6 11 OUTHD1 INHD2 7 10 OUTHD2 INHD3 8 9 OUTHD3 07532-002 INSD1 Figure 3. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mnemonic INSD1 INSD2 INSD3 VCC DIS INHD1 INHD2 INHD3 OUTHD3 OUTHD2 OUTHD1 GND GND OUTSD3 OUTSD2 OUTSD1 Description Standard Definition Input 1 Standard Definition Input 2 Standard Definition Input 3 Power Supply Disable/Power-Down Input High Definition Input 1 High Definition Input 2 High Definition Input 3 High Definition Output 3 High Definition Output 2 High Definition Output 1 Ground Ground Standard Definition Output 3 Standard Definition Output 2 Standard Definition Output 1 www.BDTIC.com/ADI Rev. 0 | Page 5 of 12 ADA4420-6 TYPICAL PERFORMANCE CHARACTERISTICS VS = 5.0 V, TA = 25°C, VO = 2.0 V p-p, RL = 150 Ω, dc-coupled inputs, ac-coupled outputs, unless otherwise noted. See Figure 17, Figure 18, and Figure 19 for the test circuits. 10 NORMALIZED GAIN (dB) SD CHANNELS, RL = 75Ω –20 –30 SD CHANNELS, RL = 150Ω –40 –50 –60 0 –1.0 –1.5 –2.0 –3.0 1 100 Figure 7. Flatness vs. Load (RL) 10 1.0 0 0.5 NORMALIZED GAIN (dB) 0 www.BDTIC.com/ADI –20 –30 –40 –50 HD –40°C HD +25°C HD +85°C SD –40°C SD +25°C SD +85°C –70 –1.0 –1.5 HD –40°C HD +25°C HD +85°C SD –40°C SD +25°C SD +85°C –2.0 –2.5 1 10 100 FREQUENCY (MHz) –3.0 07532-005 –60 –0.5 1 10 FREQUENCY (MHz) Figure 5. Frequency Response vs. Temperature Figure 8. Flatness vs. Temperature 10 0 0 –10 –10 –20 –20 GAIN (dB) 10 –30 –40 HD DC-COUPLED HD AC-COUPLED –30 –40 –50 –50 –60 –60 SD VO = 100mV p-p SD VO = 2.0V p-p HD VO = 100mV p-p HD VO = 2.0V p-p 1 SD AC-COUPLED –70 10 100 FREQUENCY (MHz) –80 07532-006 –70 SD DC-COUPLED 1 10 100 FREQUENCY (MHz) Figure 9. Frequency Response vs. Output Coupling Figure 6. Frequency Response vs. Amplitude Rev. 0 | Page 6 of 12 07532-017 GAIN (dB) 100 FREQUENCY (MHz) –10 GAIN (dB) 10 07532-007 100 Figure 4. Frequency Response vs. Load (RL) –80 HD CHANNELS, RL = 150Ω SD CHANNELS, RL = 150Ω –0.5 07532-008 10 07532-004 1 FREQUENCY (MHz) –80 HD CHANNELS, RL = 75Ω –2.5 –70 –80 SD CHANNELS, RL = 75Ω 0.5 HD CHANNELS, RL = 150Ω –10 GAIN (dB) 1.0 HD CHANNELS, RL = 75Ω 0 ADA4420-6 6 100 90 5 SD CHANNELS DISABLE VOLTAGE (V) 70 60 50 SD CHANNELS 40 30 HD CHANNELS 20 4 3 2 HD CHANNELS 1 1 10 100 FREQUENCY (MHz) –1 –600 07532-009 0 0.1 –400 0 200 400 600 800 1000 1200 80 100 TIME (ns) Figure 12. Enable Turn-On Time Figure 10. Group Delay vs. Frequency 10k –200 07532-012 0 10 07532-013 GROUP DELAY (ns) 80 36 DIS = 0 SUPPLY CURRENT (mA) 1k 100 34 33 32 31 www.BDTIC.com/ADI 30 29 10 0.1 1 10 FREQUENCY (MHz) 100 07532-011 OUTPUT IMPEDANCE (Ω) 35 28 –60 –40 –20 0 20 40 60 TEMPERATURE (°C) Figure 13. Supply Current vs. Temperature Figure 11. Output Impedance vs. Frequency Rev. 0 | Page 7 of 12 ADA4420-6 4.70 –10 4.68 OUTPUT SATURATION VOLTAGE (V) 0 –30 –40 –50 –60 SD CHANNELS –70 HD CHANNELS –90 0.1 1 4.64 4.62 4.60 4.58 4.56 4.54 4.52 10 100 1000 FREQUENCY (MHz) 07532-014 –80 4.66 4.50 –60 –40 –20 0 20 6 SD CHANNELS 3 HD CHANNELS www.BDTIC.com/ADI 1 0 –1 –200 –160 –120 –80 –40 0 40 80 TIME (ns) 120 160 200 07532-015 DISABLE VOLTAGE (V) 5 2 60 80 Figure 16. Output Saturation Voltage vs. Temperature Figure 14. Crosstalk vs. Frequency 4 40 TEMPERATURE (°C) Figure 15. Disable Turn-Off Time Rev. 0 | Page 8 of 12 100 07532-010 CROSSTALK (dB) –20 ADA4420-6 TEST CIRCUITS AGILENT E3631A POWER SUPPLY ±25V COM +6V + – + – ADA4420-6 TEST CIRCUIT (SEE FIGURE 17) VCC 0.1µF VCC GND DISABLE VIN 10µF VOUT 50Ω PORT 1 220µF ADA4420-6 49.9Ω VOUT 118Ω 07532-018 86.6Ω DISABLE GND AGILENT 8753D VECTOR NETWORK ANALYZER Figure 17. DC-Coupled Input, AC-Coupled Output Figure 19. Test Circuit for Frequency Response and Group Delay VCC 0.1µF 49.9Ω 0.1µF www.BDTIC.com/ADI 10µF ADA4420-6 VOUT 118Ω 86.6Ω DISABLE GND 07532-019 VIN PORT 2 BIAS CONNECT PORT 1 07532-020 VIN Figure 18. AC-Coupled Input, DC-Coupled Output Rev. 0 | Page 9 of 12 ADA4420-6 APPLICATIONS INFORMATION OVERVIEW ADA4420-6 220µF 75Ω CABLE 75Ω 220µF 75Ω CABLE 75Ω 75Ω 07532-022 With its high impedance inputs and high output drive, the ADA4420-6 is ideally suited to video reconstruction and antialias filtering applications. The high impedance inputs give designers flexibility with regard to how the input signals are terminated. Devices with DAC current source outputs that feed the ADA4420-6 can be loaded in whatever resistance provides the best performance, and devices with voltage outputs can be optimally terminated as well. The ADA4420-6 outputs can each drive up to two source-terminated, 75 Ω loads and, therefore, can directly drive the outputs from set-top boxes and DVDs without the need for a separate output buffer. 75Ω Figure 20. Driving Two AC-Coupled Loads with Two Coupling Capacitors ADA4420-6 75Ω 75Ω CABLE 470µF 75Ω 75Ω 75Ω CABLE The ADA4420-6 includes a disable feature that can be used to save power when a particular device is not in use. When disabled, the ADA4420-6 typically draws only 7 μA from the supply. The disable feature is asserted by pulling the DIS pin low. Table 5 summarizes the operation of the disable feature. Table 5. Disable Function DIS Pin Connection Status VCC or floating GND Enabled Disabled 75Ω 07532-023 DISABLE Figure 21. Driving Two AC-Coupled Loads with One Common Coupling Capacitor PRINTED CIRCUIT BOARD (PCB) LAYOUT As with all high speed applications, attention to the PCB layout is of paramount importance. When designing with the ADA4420-6, adhere to standard high speed layout practices. A solid ground plane is recommended, and surface-mount, ceramic power supply decoupling capacitors should be placed as close as possible to the supply pins. Connect all of the ADA4420-6 GND pins to the ground plane with traces that are as short as possible. Controlled impedance traces of the shortest length possible should be used to connect to the signal I/O pins and should not pass over any voids in the ground plane. A 75 Ω impedance level is typically used in video applications. When driving transmission lines, include series termination resistors on the signal outputs of the ADA4420-6. www.BDTIC.com/ADI INPUT AND OUTPUT COUPLING Inputs to the ADA4420-6 can be ac- or dc-coupled. For dc-coupled inputs, the signal must be completely contained within the input range of 0 V to 2.1 V. When using ac-coupled inputs, the lowest point of the signal is clamped to approximately 0 V. The ADA4420-6 outputs can be either ac- or dc-coupled. When driving single ac-coupled loads in standard 75 Ω video distribution systems, a minimum capacitance of 220 μF is recommended to avoid line and field droop. There are two ac coupling options when driving two loads from one output. One option simply uses the same value capacitor on the second load, while the other option uses a common coupling capacitor that is at least twice the value used for the single load (see Figure 20 and Figure 21). When driving two parallel 150 Ω loads (75 Ω effective load), the 3 dB bandwidth of the filters typically varies from that of the filters with a single 150 Ω load (see Figure 4). When the ADA4420-6 receives its inputs from a device with current outputs, the required load resistor value for the output current is often different from the characteristic impedance of the signal traces. In this case, if the interconnections are short (<< 0.1 wavelength), the trace does not have to be terminated in its characteristic impedance. Traces of 75 Ω can be used in this instance, provided their lengths are an inch or two at most. This is easily achieved because the ADA4420-6 and the device feeding it are usually adjacent to each other, and connections can be made that are less than one inch in length. VIDEO ENCODER RECONSTRUCTION FILTER The ADA4420-6 is easily applied as a reconstruction filter at the DAC outputs of a video encoder. Figure 22 illustrates how to use the ADA4420-6 in this type of application following an ADV734x series video encoder, with a single-supply and ac-coupled outputs. Rev. 0 | Page 10 of 12 ADA4420-6 ×2 ×1 HD ×2 ×1 HD ×2 220μF 75Ω OUTHD1 + HD OUTHD2 + ×1 220μF 75Ω OUTHD3 + INHD1 DAC 1 220μF 75Ω OUTSD1 + MULTIFORMAT VIDEO ENCODER 220μF 75Ω OUTSD2 + ADV734x 220μF 75Ω OUTSD3 220μF 75Ω Y 300Ω INHD2 DAC 2 Pb 300Ω INHD3 DAC 3 Pr 300Ω ADA4420-6 DIS INSD1 DAC 4 ×1 SD ×2 ×1 SD ×2 CVBS 300Ω INSD2 DAC 5 300Ω DAC 6 RSET2 4.12kΩ ×1 SD ×2 300Ω 4.12kΩ 07532-021 RSET1 + S-VIDEO INSD3 Figure 22. The ADA4420-6 Applied as a Reconstruction Filter Following an ADV734x Series Video Encoder www.BDTIC.com/ADI Rev. 0 | Page 11 of 12 ADA4420-6 OUTLINE DIMENSIONS 0.197 (5.00) 0.193 (4.90) 0.189 (4.80) 16 9 1 8 0.244 (6.20) 0.236 (5.99) 0.228 (5.79) 0.010 (0.25) 0.006 (0.15) 0.069 (1.75) 0.053 (1.35) 0.065 (1.65) 0.049 (1.25) 0.010 (0.25) 0.004 (0.10) COPLANARITY 0.004 (0.10) 0.158 (4.01) 0.154 (3.91) 0.150 (3.81) SEATING PLANE 0.025 (0.64) BSC 0.012 (0.30) 0.008 (0.20) 8° 0° 0.020 (0.51) 0.010 (0.25) 0.050 (1.27) 0.016 (0.41) 0.041 (1.04) REF 012808-A COMPLIANT TO JEDEC STANDARDS MO-137-AB CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 23. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16) Dimensions shown in inches and (millimeters) www.BDTIC.com/ADI ORDERING GUIDE Model ADA4420-6ARQZ 1 ADA4420-6ARQZ-R71 ADA4420-6ARQZ-RL1 1 Temperature Range –40°C to +85°C –40°C to +85°C –40°C to +85°C Package Description 16-Lead Shrink Small Outline Package (QSOP) 16-Lead Shrink Small Outline Package (QSOP) 16-Lead Shrink Small Outline Package (QSOP) Z = RoHS Compliant Part. ©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07532-0-8/08(0) Rev. 0 | Page 12 of 12 Package Option RQ-16 RQ-16 RQ-16 Ordering Quantity 1 1,000 1,500