Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Tyler D. Groff Contact Information Department of Mechanical and Aerospace Engineering Princeton University Phone: (609) 258-8449 Engineering Quad, Olden St. E-mail: [email protected] Princeton, NJ 08544 USA www.princeton.edu/∼tgroff/ Research Interests dynamics and control theory, engineering design, optical design, exoplanet science, observational astronomy, solar physics, space telescopes and exploration, instrumentation: fundamental research in hardware, techniques, and methodologies to improve science Education Princeton University, Princeton, NJ USA Ph.D., Department of Mechanical and Aerospace Engineering, September 2012 Advisor: N. Jeremy Kasdin Thesis: Optimal Electric Field Estimation and Control for Coronagraphy Topic: Optimal focal plane electric field estimation and broadband control to improve the accuracy and robustness of wavefront control systems designed to suppress quasi-static speckles in coronagraphic instrumentation M.A. Department of Mechanical and Aerospace Engineering, November 2009 Advisor: N. Jeremy Kasdin Major Area: Dynamics and Controls, Minor Area: Applied Physics/Optics Tufts University, Medford, MA USA School of Engineering: Department of Mechanical Engineering B.S., Mechanical Engineering and Astrophysics, Magna Cum Laude, May 2007 Advisor: Robert White Thesis: Acoustic Damping of Micromachined Diaphragms with Static Pressure Equalization Honors, Awards and Affiliations Nancy Grace Roman Technology Fellowship, 2015 • NASA grant to continue ferrofluid DM project and develop surrounding instrumentation architecture. Eric and Wendy Schmidt Transformative Technology Fund Recipient, 2013 • Princeton grant to develop a deformable mirror concept based on ferrofluid technology Graduate Fellowships and Awards • NASA Earth and Space Science Graduate Fellowship, 2010-2012 • Crocco Award for Teaching Excellence, Princeton University, 2011 • Honorable Mention NSF Graduate Research Fellowship Program, 2009 Professional Affiliations • Member of SPIE, May 2009 - present • Member of the American Astronomical Society, September 2008-present • Member of IEEE, 2012-2014 • Member of Tau Beta Pi, 2007-present Research and Professional Experience Associate Research Scholar July 2014-present Princeton Universiey Chief Optical Scientist for CHARIS and Lab Manager Mentoring and research support for research staff in the High Contrast Imaging Laboratory. PI of ferrofluid-based deformable mirror project 1 of 6 Postdoctoral Research Associate 2012-June 2014 Princeton University Chief Optical Scientist - CHARIS Integral Field Spectrograph Project management, translating science requirements into engineering requirements, optical and mechanical design, and development of the instruments scientific capabilities Strategic Exploration of Exoplanets and Disks (SEEDS) Member 2010-present Subaru Telescope/Princeton University Certified Engineer in Training New Jersey State Board of Professional Engineers and Land Surveyors 2010 SCExAO Instrument Collaborator June 2009-present Subaru Telescope: Olivier Guyon Ongoing development and design of the CHARIS sister project, the Subaru Coronagraphic Extreme Adaptive Optics instrument Engineering Intern DFM Engineering, Inc.: Dr. Frank Melsheimer Student Researcher, Field of Solar Physics Tufts Astronomy: Dr. Robert Willson Teaching Experience Summers 2006- 2008 Summer 2005 Lecturer: Introduction to Engineering Dynamics MAE 206 Princeton University, Spring 2014 • Lecturer for sophomore level course on Newtonian mechanics Graduate Teaching Fellow, McGraw Center Princeton University, 2011 • Engineering instructor for a short course new teaching assistants are required to take Teaching Assistant: Introduction to Engineering Dynamics, MAE 206 Princeton University, Spring 2010 & 2011 • Sophomore level dynamics class required for all MAE students • Wrote problem sets and solutions, graded homework, held weekly office hours and precept, and gave several lectures Teaching Assistant: Engineering Design, MAE 321 Princeton University, Fall 2010 • Junior level machine design course required for MAE students • Wrote problem sets and solutions, graded homework, held weekly office hours, assisted in the machine shop component, and gave several lectures Teaching Assistant: Introduction to Engineering, EGR 194 Princeton University, Spring 2010 • Introduced freshmen to programming and data analysis using MATLAB • Developed and ran the robotics and mechanical design lab 2 of 6 Publications and Presentations Peer Reviewed Journal Articles [1] T. D. Groff, A J Riggs, B. Kern, and N. J. Kasdin. Methods and limitations of focal plane sensing, estimation, and control in high contrast imaging. JATIS, 2(1), 2015. [2] T. D. Groff and N. J. Kasdin. Kalman filtering techniques for focal plane electric field estimation. JOSA A, 30(1):128–139, 2013. [3] A. J. Eldorado Riggs, N. J. Kasdin, and T. D. Groff. Recursive starlight and bias estimation for high-contrast imaging with an extended kalman filter. JATIS, 2(Accepted), 2015. [4] L. Pueyo, J. Kay, N.J. Kasdin, T. Groff, M. McElwain, A. Give’on, and R. Belikov. Optimal dark hole generation via two deformable mirrors with stroke minimization. Applied Optics, 48(32):6296–6312, 2009. [5] R.F. Willson and T.D. Groff. Very Large Array, SOHO, and RHESSI observations of magnetic interactions and particle propagation across large-scale coronal loops. Solar Physics, 250(1):89–105, 2008. In Preparation [1] T. D. Groff and N. J. Kasdin. Setting and complying with crosstalk requirements in a high contrast integral field spectrograph. JOSA A, in preparation. [2] T. D. Groff, N. J. Kasdin, and M. A. Limbach. L-BBH2: Cryogenic characterization and design of a new dispersing element for the near-ir. Optical Engineering, in preparation. [3] T. D. Groff and A. Lemmer. A new ferrofluid backed deformable mirror for high precision wavefront control. Applied Optics, in preparation. [4] T. D. Groff, N. J. Kasdin, M. A. Limbach, M. Galvin, M. A Carr, G. Knapp, T. Brandt, C. Loomis, N. Jarosik, K. Mede, J. Gunn, R. Lupton, O. Guyon, N. Jovanovic, F. Martinache, N. Takato, and M. Hayashi. CHARIS: Final design, capabilities, and expected science yield for Subaru’s high contrast IFS. JATIS, in preparation. Invited Talks 2/20/2015: The CHARIS IFS: An Example of High Contrast Imaging with a Spectrograph , Star and Planet Formation Seminar Series, STScI, Maryland 2/28/2014: CHARIS: Subaru’s Exoplanet Imaging Spectrograph, Gravity Group Seminar, Princeton, NJ 12/10/2013: The CHARIS High Contrast Imaging Spectrograph, 5th Subaru International Conference, Kona, HI 02/11/2013: Designing the CHARIS Integral Field Spectrograph for Imaging Exoplanets, Department of Astronomy, Cornell University, NY 11/30/2011: Optimization of Focal Plane Wavefront Estimation and Control in Polychromatic Light for High Contrast Imaging, Department of Aeronautics and Astronautics, MIT, MA 08/18/2011: Enabling Technology for Coronagraphic Imaging; Optimal Broadband Wavefront Control, Ames Research Center, Mountain View, CA 02/23/2011: Optimal Focal Plane Wavefront Control in Polychromatic Light for High Contrast Imaging, Goddard Space Flight Center, Greenbelt, MD 3 of 6 Conference Presentations and Papers [1] T. D. Groff, N. J. Kasdin, M. A. Limbach, M. Galvin, M. Carr, G. Knapp, T. Brandt, C. Loomis, N. Jarosik, K. Mede, M. McElwain, D. Leviton, K. Miller, M. Quijada, O. Guyon, N Jovanovic, N. Takato, and M. Hayashi. The CHARIS IFS for high contrast imaging at subaru. In Proc. SPIE, volume 9605, page 96051C, 2015. [2] D. Leviton, K. Miller, M. Quijada, and T. D. Groff. Temperature-dependent refractive index measurements of l-bbh2 glass for the subaru charis integral field spectrograph. In Proc. SPIE, volume 9578, page 95780J, 2015. [3] A. Lemmer, T. D. Groff, N. J. Kasdin, D. Echeverri, and I. Cleff. Techological progress of a ferrofluid deformable mirror with tunable nominal optical power for high-contrast imaging. In Proc. SPIE, volume 9605, page 960525, 2015. [4] T. D. Groff, N. J. Kasdin, M. A. Limbach, M. Galvin, M. Carr, G. Knapp, T. Brandt, C. Loomis, N. Jarosik, K. Mede, M. McElwain, M. Janson, O. Guyon, N Jovanovic, N. Takato, F Martinache, and M. Hayashi. Construction and status of the CHARIS high contrast imaging spectrograph. In Proc. SPIE, volume 9147, page 91471W, 2014. [5] T. Brandt, M. McElwain, M. Janson, G. Knapp, K. Mede, M. A. Limbach, T. D. Groff, A. Burrows, J. Gunn, O. Guyon, et al. CHARIS science: performance simulations for the subaru telescope’s third-generation of exoplanet imaging instrumentation. In Proc. SPIE, volume 9148, page 914849, 2014. [6] M. A. Limbach, T. D. Groff, N. J. Kasdin, T. Brandt, K. Mede, C. Loomis, M. Hayashi, and N. Takato. Eris: the exoplanet high-resolution image simulator for CHARIS. In Proc. SPIE, volume 9147, page 91478E, 2014. [7] M. Galvin, M. Carr, T. D. Groff, N. J. Kasdin, R. Fagan, M. Hayashi, and N. Takato. The mechanical design of CHARIS: an exoplanet ifs for the subaru telescope. In Proc. SPIE, volume 9151, page 91513G, 2014. [8] O. Guyon, Y. Hayano, M. Tamura, T Kudo, S. Oya, Y. Minowa, O. Lai, N Jovanovic, N. Takato, N. J. Kasdin, T. D. Groff, M. Hayashi, N. Arimoto, H. Takami, C. Bradley, H. Sugai, G. Perrin, P. Tuthill, and B. Mazin. Adaptive optics at the subaru telescope: current capabilities and development. In Proc. SPIE, volume 9148, page 91481R, 2014. [9] A J Riggs, N. J. Kasdin, and T. D. Groff. Optimal wavefront estimation of incoherent sources. In Proc. SPIE, volume 9143, page 914324, 2014. [10] T. D. Groff, M. A. Peters, N. J. Kasdin, G. Knapp, M. Galvin, M. Carr, M. McElwain, T. Brandt, M. Janson, J. Gunn, et al. Design of the CHARIS integral field spectrograph for exoplanet imaging. In Proc. SPIE, page 88640H, 2013. [11] T. D. Groff, N. J. Kasdin, S. Shaklan, and L. Pueyo. Wavefront control scenarios for a coronagraph on an AFTA-like space telescope. In Proc. SPIE, page 886413, 2013. [12] T. D. Groff, N. J. Kasdin, and M. A. Peters. Focal plane wavefront estimation using an integral field spectrograph. In Aerospace Conference, 2013 IEEE, pages 1–8. IEEE, 2013. [13] T. D. Groff, N. J. Kasdin, and A J Riggs. Optimizing focal plane electric field estimation for detecting exoplanets. In Aerospace Conference, 2013 IEEE, pages 1– 12. IEEE, 2013. [14] A. Riggs, T. D. Groff, A. Carlotti, N. J. Kasdin, E. Cady, B.D. Kern, and A. Kuhnert. Demonstration of symmetric dark holes using two deformable mirrors at the highcontrast imaging testbed. In Proc. SPIE, volume 8864, page 88640T, 2013. 4 of 6 [15] M. N’Diaye, E. Choquet, L. Pueyo, E. Elliot, M.D. Perrin, J. K. Wallace, T. D. Groff, A. Carlotti, D. Mawet, M. Scheckells, et al. High-contrast imager for complex aperture telescopes (hicat): 1. testbed design. In Proc. SPIE, page 88641K, 2013. [16] T.D. Groff and N.J. Kasdin. Kalman filter estimation for focal plane wavefront correction. In Proc. SPIE, volume 8442, pages 1–14. SPIE, 2012. [17] T.D. Groff, N.J. Kasdin, A. Carlotti, and A.J.E. Riggs. Broadband focal plane wavefront control of amplitude and phase aberrations. In Proc. SPIE, volume 8442, page 84420C, 2012. [18] M.A. Peters, T.D. Groff, N.J. Kasdin, M. McElwain, M. Galvin, M. Carr, R. Lupton, J. Gunn, G. Knapp, Q. Gong, A. Carlotti, T. Brandt, M. Janson, O. Guyon, F. Martinache, M. Hayashi, and N. Takato. Conceptual design of the coronagraphic high angular resolution imaging spectrograph (CHARIS) for the subaru telescope. In Proc. SPIE, volume 8446, page 84467U, 2012. [19] M. McElwain, T. Brandt, M. Janson, G. Knapp, M.A. Peters, A. Burrows, A. Carlotti, M. Carr, T.D. Groff, J. Gunn, O. Guyon, M. Hayashi, N.J. Kasdin, M. Kuzuhara, R. Lupton, F. Martinache, D. Spiegel, N. Takato, M. Tamura, E. Turner, and R. Vanderbei. Scientific design of a high contrast integral field spectrograph for the subaru telescope. In Proc. SPIE, volume 8446, page 84469C, 2012. [20] T. Groff and N.J. Kasdin. Optimal wavefront estimation and control using adaptive techniques. In Aerospace Conference, 2012 IEEE, pages 1–9. IEEE, 2012. [21] T.D. Groff and N.J. Kasdin. Designing an optimal estimator for more efficient wavefront correction. In Proc. SPIE, volume 8151, page 81510X, 2011. [22] T.D. Groff, A. Carlotti, and N.J. Kasdin. Progress on broadband control and deformable mirror tolerances in a 2-dm system. In Proc. SPIE, volume 8151, page 81510Z, 2011. [23] N.J. Kasdin, T. Groff, A. Carlotti, and R. Vanderbei. Space-based planet detection using two mems dms and a shaped pupil. In Proc. SPIE, volume 8253, page 825303, 2012. [24] N.J. Kasdin, A. Carlotti, L. Pueyo, T. Groff, and R. Vanderbei. Unified coronagraph and wavefront control design. In Proc. SPIE, volume 8151, page 81510Y, 2011. [25] O. Guyon, F. Martinache, C. Clergeon, R. Russell, T. Groff, and V. Garrel. Wavefront control with subaru coronagraphic extreme adaptive optics (scexao) system. In Proc. SPIE, volume 8149, page 814908, 2011. [26] F. Martinache, O. Guyon, V. Garrel, C. Clergeon, T. Groff, P. Stewart, R. Russell, and C. Blain. The subaru coronagraphic extreme ao project: progress report. In Proc. SPIE, volume 8151, page 81510Q, 2011. [27] V. Garrel, O. Guyon, P. Baudoz, F. Martinache, P. Stewart, J. Lozi, and T. Groff. The subaru coronagraphic extreme ao (scexao) system: fast visible imager. In Proc. SPIE, volume 8151, page 81510R, 2011. [28] T. D. Groff, A. Carlotti, and N. J. Kasdin. Progress on broadband control and deformable mirror tolerances in a 2-dm system. In Proceedings of Spirit of Lyot 2010, 2010. [29] D. Savransky, T. D. Groff, and N. J. Kasdin. Experimental verification of bayesian planet detection algorithms with a shaped pupil coronagraph. In Proceedings of Spirit of Lyot 2010, 2010. 5 of 6 [30] T.D. Groff, A. Carlotti, and N.J. Kasdin. Progress on broadband control and deformable mirror tolerances in a 2-dm system. In Proc. SPIE, volume 7731, page 77314S, 2010. [31] L. Pueyo, S.B. Shaklan, A. Give’On, M. Troy, N.J. Kasdin, J. Kay, T. Groff, M. McElwain, and R. Soummer. Correction of quasi-static wavefront errors for elt with two sequential dms. In Adaptative Optics for Extremely Large Telescopes, volume 1, page 5009, 2010. [32] T.D. Groff, N.J. Kasdin, and L. Pueyo. Broadband correction for high contrast imaging using two deformable mirrors in series. In Adaptive Optics: Methods, Analysis and Applications. Optical Society of America, 2009. [33] J. Kay, T.D. Groff, and N.J. Kasdin. Two-camera wavefront estimation with a gercheberg-saxton based scheme. In Proc. SPIE, volume 7440, page 74400C, 2009. [34] E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, et al. Progress on the occulter experiment at princeton. In Proc. SPIE, volume 7440, page 744006, 2009. Service Professional Societies • Session Chair, SPIE, 2015 Volunteer Work • Guest Teacher, June 2009 - present Outdoor Education Lab School, Jefferson County Public Schools, Colorado Skills Hardware and Software • Extensive experience with design, assembly, and alignment of optical/mechanical systems, optical fiber technology, and deformable mirrors • Experience with machine shop tools, various electrical, computer, and camera systems • MATLAB, Mathematica, MathCAD, and LabView, AMPL and Python • CREO Parametric, AutoCAD, and ZEMAX • Clean room operation, layout, maintenance for optical instrumentation • Operation and layout of vacuum systems • Cryogenic instrumentation using closed cycle crycoolers 6 of 6