Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Remote Sensing Application to Detect and Idetify the Cimate Change over Indonesia Eddy Hermawan and Lely Qodrita Avia Contact : [email protected] Atmospheric Modeling Divisionof Atmospheric Science and Technology Center of LAPAN, Jln. Dr. Djundjunan No. 133, Bandung 40173 Absract This study is mainly concerned to detect and id identify if the h climate li change h over Indonesia, d i especially on the hydrometeorological phenomena using space technology applications. Firstly, we reviewed the basic concept of global climate change based on the trend of surface temperature and precipitation over several regions over Indonesia. Since the Indonesia Maritime Continent (IMC) is mostly effected by the dynamical of Monsoon system, we mainly focussed on the flood and drought hazard. Cont ... Then, we applied the space technology applications li i to detect d and d identify id if the h trend d or tendency of surface temperature and precipitation mainly in the Java Island. precipitation, Island Since, Since both phenomena is related well to agriculture sector, we need to consider to save the elevent provinces that has already stated as the rice production center from the extreme weather or climate li t condition. diti H Here, we promote t the th SADEWA (Satellite Disaster Early Warning System) and the equatorial atmospheric model that still developing by LAPAN Bandung. “Regarding to the statement from the IPCC experts who stated that as a result of climate change, more frequent and more yd o eteo o og ca events intense hydrometeorological can be expected, we mainly concerned to investigate the surface temperature and precipitation (rainfall) behavior over Java Island, including their trend or tendency taken from satellite and in-situ observation respectively” observation, ti l ” From this figure, figure we can see, see at least we have seven climate hazards over Indonesia. They are : 1. Earthquake 2 Vulcano 2. 3. Tsunami 4 Tropical Storm 4. 5. Storm Surge . Flood --- > much water 7 Drought --- > less water 7. 6 We know that both phenomena (flood and drought) is related well with the anomaly of Monsoon system, but we need to consider the other phenomena that also have severe impact that we call as the MJO (Madden Julian Oscillation) as one of the most mode oscillation along the equatorial region. We can see Jakarta flood’s in 1996, 2002, 2006, 2007, and 2013 recently as the samples the severe impacts of MJO event in the Western part of Indonesia region. Review “Floods Fl d and dD Drought” ht” Jakarta Floods g In Early February 2007 Flooding in Sprawling Mega Cities in Southeast Asia Philippines Malaysia y Jakarta (Feb 2007) Bangkok 2011 Singapore 2010 10 Jakarta Floods February 2007 0 Sta. Tanjung Priok Sta. Halim Perdanakusuma Sta. Kemayoran Tanggal Sta. Cengkareng Augg-08 Feb b-08 Augg-07 Feb b-07 Augg-06 Feb b-06 Augg-05 Feb b-05 800 Augg-04 Feb b-04 Augg-03 Jan, Feb 1996 Feb b-03 Augg-02 Feb b-02 Augg-01 Feb b-01 Augg-00 Feb b-00 Augg-99 Feb b-99 Augg-98 Feb b-98 1000 Augg-97 Feb b-97 Augg-96 Feb b-96 Augg-95 Feb b-95 Curaah Hujan (m mm/bulan) Grafik Curah Hujan Bulanan Wilayah Jakarta Periode Januari 1995 - Desember 2008 1200 Jan, Feb 2002 Jan, Feb 2007 600 400 200 Please note here almost every 5-6 gyears, Jakarta is attacked by the big flooding and the intense flooding, is still increased MJO animation Please look at the moving of center convection over Indonesia both in 850 & 200 mb Drought in 1997/98 / ‘82 ‘97 (http://www.cpc.ncep.noaa.gov/products/Global_Monsoons/Asian_Monsoons/wind_polrc_anim_asia.gif) “(MK ( = Musim Kering) g) “(MB = Musim Basah) (BMKG , 2009) DEC JAN FEB JUN JUL AUG 9/13/2013 Contoh dari kondisi yang tidak neutral, yakni ekstrim anomali SST yang menyebabkan El El-Nino Nino kuat di tahun 1982 dan 1997 (http://www.bom.gov.au/climate/enso/nov97_ssta-small.png) di download 05.06.2010 Nino 3.4 DMI ~Oct Oct ‘97 97 + “long dry” _ ~Oct ‘98 “long wet” ~ Oct ‘97 97 DMI (+) ~ Oct ‘98 DMI (-) Cross correlation b t between DMI vs Nino 3.4 Long dry season along 1997/98 September, October, and November 1997 Long wet season along 1998/99 September, October, and November 1998 Cli t Projection Climate P j ti g Temperature & Precipitation 9/13/2013 The possibility of precipitation change over Java & Bali Island Early wet season trends will be delayed Future Naylor et.al., 2007 Naylor et et.a a 2007) Now Length g of wet season trends shorter 28 Detecting Climate Change g Temperature T 28 BANDUNG / WEST JAVA (1971-2002) y = 0,0019x + 22,145 23 18 y = 0,0013x 0 0013 + 26 26,925 925 30 28 26 24 22 1 3 30 59 5 88 8 11 17 14 46 17 75 20 04 23 33 26 62 29 91 32 20 34 49 37 78 40 07 43 36 tem mperature (deg g C) 1 2 27 53 5 79 7 10 05 13 31 15 57 18 83 20 09 23 35 26 61 28 87 31 13 33 39 36 65 39 91 41 17 tem mperature (deg C) 30 28 26 24 22 1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 temperatur re (deg C) 1 28 55 82 109 136 163 190 217 244 271 298 325 352 379 406 433 e (deg C) temperature JAKARTA OBS. (19712007) TEGAL / CENTRAL JAVA (1971-2008) 30 28 26 24 22 y = 0,0015x + 26,389 SANGKAPURA / EAST JAVA (1971-2004) y = 0,0036x + 26,643 RECENT GLOBAL MONTHLY MEAN CO2 BMG 386 Mauna Loa 384 Indonesia GAW Obs. Linear (Mauna Loa ) 380 378 376 374 372 370 368 366 364 362 BMG 2007 2 2006 2 2005 2 2004 2 360 2003 2 CO2 C CONCENTRAT TION (ppm) 382 YEAR Source : NOAA – BMG, September 2007 Detecting Climate Change g Rainfall/Precipitation PRECIPITATION CHANGE PER PRECIPITATION CHANGE PER‐‐ CLIMATE PERIOD (30 YEARS) IN DENPASAR BALI (30 YEARS) IN DENPASAR, BALI Avia, 2007b 1901 1904 1907 1910 1913 1916 1919 1922 1925 1928 1931 1934 1937 1940 1943 1946 1949 1952 1955 1958 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 Preccipitation (mm m) VARIABILITY AND TREND OF PRECIPITATION 1901‐2012 IN CILACAP, CENTRAL JAVA IN CILACAP CENTRAL JAVA 6000 5000 y = ‐8,244x + 3854,9 R² = 0,0712 4000 3000 2000 1000 0 year Definitions of climate change (IPCC, AR-4, 2007) Climate change in IPCC usage refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or the variability of its properties and that persists for an properties, extended period, typically decades or longer. l Lokasi Jakarta Surabaya y Yogyakarta Cilacap 41 Tren the amount of wet and dry season per decade (every 10 years) for period of 1953-2002 (~53 years) at Surabaya 9 8 7 6 5 4 3 2 1 0 y = ‐0,2x + 5,4 R² = 0,1429 MH Linear (MH) Periode (Tahun) Panjang Musim a ja g us Kemarau e a au Jumlah h (bulan) Jumlah h (bulan) Panjang Musim a ja g us Hujan uja 9 8 7 6 5 4 3 2 1 0 y = 0,2x + 6,6 R² = 0,1429 R = 0 1429 MK Linear (MK) Periode (Tahun) 42 Tren the amount of wet and dry season per decade (every 10 years) for period of 1901-2012 (~112 years) at Cilacap Panjang Musim Hujan a ja g us uja Panjang Musim Kemarau a ja g us e a au 4 14 y = ‐0,1909x + 11,6 8 6 MH 4 Linear (MH) 2 3 2 2 MK 1 Linear (MK) 1 Dekade Dekade 2001‐‐2010 1981‐‐1990 1961‐‐1970 1941‐‐1950 1921‐‐1930 0 1901‐‐1910 0 y = 0,1909x + 0,4 3 Jumlaah (bulan) 10 1901‐‐1910 1921‐‐1930 1941‐‐1950 1961‐‐1970 1981‐‐1990 2001‐‐2010 Jumlaah (bulan) 12 Tren the amount of wet and dry season per decade (every 10 years) for period of 1970-2012 (~43 years) at Yogyakarta 9 8 7 6 5 4 3 2 1 0 y = ‐0 6x + 7 y = ‐0,6x + 7 MH Linear (MH) Dekade Panjang Musim Kemarau a ja g us e a au Jumlah h (bulan) Jumlah h (bulan) Panjang Musim Hujan a ja g us uja 9 8 7 6 5 4 3 2 1 0 y = 0 6x + 5 y = 0,6x + 5 MK Linear (MK) Dekade The tren/tendecy of precipitation change over Java & Bali Island Early wet season trends will be delayed Future Naylor et.al., 2007 Naylor et et.a a 2007) Now Length g of wet season trends shorter 45 What should we do? We need to save the 11 provinces of g our rice production center from the extreme climate condition, such as already happened in 1982/83 and 1997/98 using TRMM data. How ? Rainfall at Surabaya Period of 1953-2002 (50 Years Observation) Composite Technique Analysis for Rainfall at Surabaya for Period of 1953-2002 Januari Februari Maret April Mei 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 1963 1961 1959 1957 1955 1953 -150-50 50 150250 Juni 51 -150-50 50 150250 -150 50 250 -150-50 50 150 250 -150-50 50 150 250 -150-50 50 150250 Cont ... Juli Agustus September Oktober November Desember 52 -150-50 50 150250 -150-50 50 150250 -150-50 50 150250 -150-50 50 150250 -150-50 50 150250 -150-50 50150250 The Application of TRMM Data Analysis to Investigate the Heavy Rainfall Potentially over Indonesia The Heavy Rainfall Distribution over Indonesia B Based d on th the TRMM D Data t A Analysis l i ffor P Period i d off 1998-2011 averaged in April The Heavy Rainfall Distribution over Indonesia B Based d on th the TRMM D Data t A Analysis l i ffor P Period i d off 1998-2011 averaged in October Finally y ... We need W d to t d develop l an equatorial atmospheric model with good time and spatial high resolution g Jakarta Future Climate Response – Precipitation (%), 2071-2100 Jakarta Precipitation 2071-2100 WRF/ECHAM A2 Climate Response for Precipitation (Relative Anomaly in %) relative to 1961-1990, JAKARTA Climate Signal/Climate Change factor: = (2071-2100) – (1961-1990) 57 SADEWA (Satellite Disaster Early Warning System atau Sistem Informasi Peringatan Dini Bencana) http://60.253.114.151/sadewa30 Contact: [email protected]