Download 3-Lie algebra Г27 over the prime field Z2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mathematica Aeterna, Vol. 5, 2015, no. 5, 905 - 909
3-Lie algebra Γ27 over the prime field Z2
BAI Ruipu
College of Mathematics and Information Science,
Hebei University, Baoding, 071002, China
email: [email protected]
LIN Lixin
College of Mathematics and Information Science,
Hebei University, Baoding, 071002, China
Abstract
In this paper, the 8-dimensional 3-Lie algebra Γ27 over the prime
field Z2 is constructed by 2-cubic matrix. It is proved that Γ27 is a
solvable but non-nilpotent 3-Lie algebra. The inner derivation algebra
ad(Γ27 ) is an 11-dimensional solvable Lie algebra, and the derivation
algebra Der(Γ27 ) with dimension 18 is solvable but non-nilpotent. And
the concrete expression of all derivations are given.
2010 Mathematics Subject Classification: 17B05 17D30
Keywords: N-cubic matrix, 3-Lie algebra, derivation, prime field.
1
Introduction
The notion of n-Lie algebra (or Lie n-algebra, Filippov algebra, Nambu-Poisson
algebra and so on) was introduced by Filippov in 1985 [1]. An n-Lie algebra
A is a vector space A endowed with a n-ary skew-symmetric multiplication
satisfying the n-Jacobi identity:
[[x1 , · · · , xn ], y2 , · · · , yn ] =
n
X
[x1 , · · · , [xi , y2, · · · , yn ], · · · , xn ].
i=1
The structure of n-Lie algebras is applied to the study of the supersymmetry
and gauge symmetry transformations of the world-volume theory of multiple
coincident M2- branes; the Bagger-Lambert theory has a novel local gauge
symmetry which is based on a metric 3-Lie algebra[2].
906
Bai Ruipu, Lin Lixin
In papers [3-7], authors constructed 3-Lie algebras by well known algebras
and N-cubic matrices over a field F with chF 6= 2, and the structure of 3-Lie
algebras is studied.
In this paper, we pay our main attention to 8-dimensional 3-Lie algebras
which are constructed by 2-cubic matrix in the prime field Z2 = {0, 1}. In the
following we suppose that Z2 = {0, 1} is the prime field with characteristic two,
for a vector space V and a subset S, the subspace generated by S is denoted
by (S).
2
Structure of 3-Lie algebras Γ27
An N-order cubic matrix A = (aijk ) over the field Z2 is an ordered object
which the elements with 3 indices, and the element in the position (i, j, k)
is (A)ijk = aijk , 1 ≤ i, j, k ≤ N and aijk = 0 or 1. Denote the set of all
cubic matrix over Z2 by Ω2 . Then Ω2 is an N 3 -dimensional vector space with
A + B = (aijk + bijk ) ∈ Ω2 , λA = (λaijk ) ∈ Ω2 , for ∀A = (aijk ), B = (bijk ) ∈
Ω2 , λ ∈ Z2 , that is, (A + B)ijk = aijk + bijk , (λA)ijk = λaijk .
Denote Eijk = (eh1 h2 h3 ), where eh1 h2 h3 = δh1 i δh2 j δh3 k , that is when h1 = i,
h2 = j, h3 = k, eh1 h2 h3 = 1, and elsewhere are zero. Then, {Eijk | 1 ≤ i, j, k ≤
n} is a basis of Ω2 .
For all A = (aijk ), B = (bijk ) ∈ Ω2 , define the multiplication ∗27 in Ω2 by
(A ∗27 B)ijk =
n
X
aqjk bipk , 1 ≤ i, j, k ≤ n.
(1)
p,q=1
Denote hAi4 =
N
P
(A)pqr =
p,q,r=1
Ω2 to Z2 and satisfies
N
P
p,q=1
apqr , Then h i4 is linear function from
hA ∗27 Bi4 = hB ∗27 Ai4 .
(2)
Define the multiplication [, , ]27 : Ω2 ∧ Ω2 ∧ Ω2 → Ω2 as follows:
[A, B, C]27 = hAi4 (B ∗27 C − C ∗27 B)
+hBi4 (C ∗27 A − A ∗27 C) + hCi4 (A ∗27 B − B ∗27 A).
(3)
Theorem 2.1[4] The linear space Ω2 are 3-Lie algebra in the multiplication
[, , ]27 , which is denoted by Γ27 , and the multiplication [, , ]27 simply denoted by
[, , ].
From above discussion the dimension of Ω2 is eight and with a basis
{E111 , E112 , E121 , E122 , E211 , E212 , E221 , E222 }.
And for all A ∈ Ω2 , A =
2
P
i,j,k=1
λijk Eijk , λijk = 1, 0 ∈ Z2 .
3-Lie algebra Γ27 over the prime field Z2
907
Theorem 2.2. The multiplication of the 3-Lie algebra Γ27 in the basis
{E111 , E112 , E121 , E122 , E211 , E212 , E221 , E222 } is as follows







































































































































[E111 , E112 , E121 ] = E121 + E111 , [E111 , E112 , E122 ] = E112 + E122 ,
[E111 , E121 , E122 ] = E122 + E112 , [E111 , E112 , E211 ] = E111 + E211 ,
[E112 , E121 , E211 ] = E221 + E111 , [E112 , E122 , E211 ] = E112 + E122 ,
[E121 , E122 , E211 ] = E111 + E221 , [E111 , E112 , E212 ] = E212 + E112 ,
[E111 , E121 , E212 ] = E111 + E121 , [E111 , E122 , E212 ] = E222 + E112 ,
[E121 , E122 , E212 ] = E222 + E112 , [E111 , E112 , E221 ] = E121 + E211 ,
[E112 , E121 , E221 ] = E221 + E121 , [E112 , E121 , E221 ] = E221 + E121 ,
[E112 , E122 , E221 ] = E112 + E122 , [E121 , E122 , E221 ] = E121 + E221 ,
[E111 , E112 , E222 ] = E212 + E122 , [E111 , E121 , E222 ] = E111 + E121 ,
[E111 , E122 , E222 ] = E222 + E122 , [E112 , E121 , E222 ] = E122 + E212 ,
[E211 , E222 , E111 ] = E111 + E211 , [E212 , E221 , E111 ] = E121 + E211 ,
[E212 , E222 , E111 ] = E212 + E222 , [E221 , E222 , E111 ] = E211 + E121 ,
[E211 , E212 , E112 ] = E112 + E212 , [E211 , E221 , E112 ] = E211 + E221 ,
[E211 , E222 , E112 ] = E122 + E212 , [E212 , E221 , E112 ] = E212 + E112 ,
[E211 , E222 , E121 ] = E221 + E111 , [E212 , E221 , E121 ] = E121 + E221 ,
[E212 , E222 , E121 ] = E212 + E222 , [E221 , E222 , E121 ] = E221 + E121 ,
[E211 , E212 , E122 ] = E112 + E222 , [E211 , E221 , E122 ] = E211 + E221 ,
[E211 , E222 , E122 ] = E122 + E222 , [E212 , E221 , E122 ] = E222 + E112 ,
[E221 , E222 , E112 ] = E122 + E212 , [E211 , E212 , E121 ] = E221 + E111 ,
[E121 , E122 , E222 ] = E222 + E122 , [E211 , E212 , E111 ] = E211 + E111 ,
[E111 , E122 , E221 ] = E121 + E211 , [E112 , E121 , E212 ] = E112 + E212 ,
[E111 , E122 , E211 ] = E211 + E111 , [E221 , E222 , E122 ] = E122 + E222 ,
[E212 , E222 , E112 ] = E112 + E122 + E222 + E212 ,
[E211 , E221 , E121 ] = E111 + E221 + E121 + E211 ,
[E112 , E122 , E222 ] = E222 + E212 + E112 + E122 ,
[E211 , E221 , E111 ] = E111 + E121 + E221 + E211 ,
[E111 , E121 , E221 ] = E221 + E211 + E111 + E121 ,
[E112 , E122 , E212 ] = E222 + E112 + E212 + E122 ,
[E111 , E121 , E211 ] = E221 + E211 + E111 + E121 ,
[E212 , E222 , E122 ] = E112 + E122 + E222 + E212 ,
(4)
where the zero product of the basis vectors are omitted.
Proof The result follows from the direct complication according to the
definition of ∗27 and Eqs.(1), (2) and (3).
Theorem 2.3 The 3-Lie algebra Γ27 is a non-nilpotent indecomposable
3-Lie algebra with a basis e1 = E111 , e2 = E112 + E111 , e3 = E111 + E121 , e4 =
E112 + E122 , e5 = E211 + E111 ,e6 = E212 + E112 , e7 = E211 + E221 + E111 + E121 ,
e8 = E212 + E222 + E112 + E122 . And the multiplication in it is as follows:
(
[e1 , e2 , e3 ] = e3 , [e1 , e2 , e4 ] = e4 , [e1 , e2 , e5 ] = e5 ,
[e1 , e3 , e5 ] = e7 , [e1 , e2 , e6 ] = e6 , [e1 , e4 , e6 ] = e8 .
(5)
908
Bai Ruipu, Lin Lixin
Proof It is clear that {e1 , · · · , e8 } is linearly independent, so it is a basis
of Ω2 . By the definition of ∗27 , we obtain Eq.(5). Since Γ27 can not be written
as the direct sum of two proper ideals, Γ27 is indecomposable.
From Γ127 = [Γ27 , Γ27 , Γ27 ] = (e3 , e4 , e5 , e6 , e7 , e8 ), Γ227 = [Γ127 , Γ27 , Γ27 ] =
(e3 , e4 , e5 , e6 , e7 , e8 ), then for all positive integer s > 1, we have Γs27 = Γ127 6= 0.
Therefore, Γ27 is non-nilpotent.
Theorem 2.4 The subalgebra H = (e1 , e2 , e7 , e8 ) is a Cartan subalgebra
of the 3-Lie algebra Γ27 . And the decomposition of Γ27 associate to H is
Γ27 = H +̇Γα +̇Γ−α , where α : (H ⊗ H) → Z2 , α(e1 , e2 ) = 1, and others are
zero, Γα = (e3 , e6 ),Γ−α = (e4 , e5 ).
Proof From Theorem 2.3, H = (e1 , e2 , e7 , e8 ) is a Cartan subalgebra of
Γ27 . Denote α : H ⊗ H → Z2 , α(e1 , e2 ) = 1, α(e1 , e7 ) = α(e1 , e8 ) = α(e2 , e7 )
= α(e2 , e8 ) = α(e7 , e8 ) = 0, we have ad(e1 , e2 )(e3 ) = e3 , ad(e1 , e2 )(e4 ) =
e4 , ad(e1 , e2 )(e5 ) = e5 , ad(e1 , e2 )(e6 ) = e6 , ad2 (e1 , e7 )ei = ad2 (e1 , e8 )(ei ) =
ad2 (e2 , e7 )(ei ) = 0, ad2 (e2 , e8 )(ei ) = ad2 (e7 , e8 )(ei ) = 0, i = 3, 4, 5, 6. We
obtain the result.
Now we study the inner derivation algebra ad(Γ27 ). For ei , ej ∈ Ω2 , denote
P
ij
ji
ad(ei , ej )ek = 8l=1 aij
0 or 1 ∈ Z2 . Then the matrix
kl el , where akl = −akl =
P8
form of ad(ei , ej ) in the basis e1 , · · · , e8 is k,l=1 aij
kl Ekl , where Ekl are the
matrix units.
Theorem 2.5 the inner derivation algebra ad(Γ27 ) is solvable but indecomposable Lie algebra with dimension 11, and X1 = E33 + E44 + E55 + E66 , X2 =
E23 + E57 , X3 = E24 + E68 , X4 = E25 + E37 , X5 = E26 + E48 , X6 = E13 , X7 =
E14 , X8 = E15 , X9 = E16 , X10 = E17 , X11 = E18 , is a basis. And the
multiplication in it is
[X1 , X2 ] = X2 , [X1 , X3 ] = X3 , [X1 , X4 ] = X4 ,
[X1 , X5 ] = X5 , [X1 , X6 ] = X6 , [X1 , X7 ] = X7 ,

[X1 , X8 ] = X8 , [X1 , X9 ] = X9 , [X2 , X8 ] = X10 ,



[X3 , X9 ] = X11 , [X4 , X6 ] = X10 , [X5 , X7 ] = X11 .





(6)
Proof By a direct computation according to Eq.(5) we have that ad(e1 , e2 )
= E33 + E44 + E55 + E66 , ad(e1 , e3 ) = E23 + E57 , ad(e1 , e4 ) = E24 + E68 ,
ad(e1 , e5 ) = E25 +E37 , ad(e1 , e6 ) = E26 + E48 , ad(e2 , e3 ) = E13 , ad(e2 , e4 ) = E14 ,
ad(e2 , e5 ) = E15 , ad(e2 , e6 ) = E16 , ad(e3 , e5 ) = E17 , ad(e4 , e6 ) = E18 . Then
{X1 , · · · , X11 } is a basis of ad(Γ27 ). From [ad(ei , ej ), ad(ek , el )]= ad([ei , ej , ek ], el )
+ad(ek , [ei , ej el ]), we obtain Eq.(6). And ad1 (Γ27 ) = [ad(Γ27 ), ad(Γ27 )] =
(X10 , X11 ), [X10 , X11 ] = 0 then ad(Γ27 ) is solvable. Since ad(X1 ) is nonnilpotent, and ad(Γ27 ) can not be written as the direct sum of two proper
ideals, ad(Γ27 ) is indecomposable non-nilpotent.
Now,we discuss the derivation algebra DerΓ27 .
3-Lie algebra Γ27 over the prime field Z2
909
Theorem 2.6 The derivation algebra Der(Γ27 ) with a basis {X1 , · · · , X18 },
where X12 = E11 + E22 + E77 + E88 , X13 = E33 + E77 , X14 = E44 + E88 ,X15 =
E55 + E77 ,X16 = E28 , X17 = E12 , and X18 = E27 , Xi , 1 ≤ i ≤ 11 are in
Theorem
2.5. The multiplication in it is


[X
,
X
1
2 ] = X2 , [X1 , X3 ] = X3 , [X1 , X4 ] = X4 , [X1 , X5 ] = X5 ,





[X1 , X6 ] = X6 , [X1 , X7 ] = X7 , [X1 , X8 ] = X8 , [X1 , X9 ] = X9 ,




[X2 , X8 ] = X10 , [X3 , X9 ] = X11 , [X4 , X6 ] = X10 , [X5 , X7 ] = X11 ,





[X2 , X12 ] = X2 , [X3 , X12 ] = X3 , [X4 , X12 ] = X4 , [X5 , X12 ] = X5 ,



 [X , X ] = X , [X , X ] = X , [X , X ] = X , [X , X ] = X ,
6
12
6
7
12
7
8
12
8
9
12
9

[X
,
X
]
=
X
,
[X
,
X
]
=
X
,
[X
,
X
]
=
X
,
[X
,
X
]
=
X18 ,
2
13
2
6
13
6
10
13
10
18
13





[X3 , X14 ] = X3 , [X7 , X14 ] = X7 , [X11 , X14 ] = X11 , [X16 , X14 ] = X16 ,





[X4 , X15 ] = X4 , [X8 , X15 ] = X8 , [X10 , X15 ] = X10 , [X18 , X15 ] = X18 ,




[X2 , X17 ] = X6 , [X3 , X17 ] = X7 , [X4 , X17 ] = X8 , [X5 , X17 ] = X9 ,




[X18 , X17 ] = X10 , [X16 , X17 ] = X11 .
And Der(Γ27 ) = ad(Γ27 )+̇(X12 , · · · , X18 ) is solvable but non-nilpotent.
Proof The result follows from a direct computation according to Theorem
2.4.
Acknowledgements
The first author (R.-P. Bai) was supported in part by the Natural Science
Foundation (11371245) and the Natural Science Foundation of Hebei Province
(A2014201006).
References
[1] V.T. Filippov, n−Lie algebras, Sib. Mat. Zh., 26 (1985) 126-140
[2] J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple
M2-branes, Phys. Rev. D 77 (2008) 065008.
[3] A. Pozhidaev, Monomial n-Lie algebras, Algebra Log. 1998, 37(5):307-322.
[4] R. Bai, H. Liu, M. Zhang, 3-Lie Algebras Realized by Cubic Matrices,
Chin.Ann. Math., 2014, 35B(2): 261-270.
[5] R. Bai, L. Lin, W. Guo, Structure of 8-dimensional 3-Lie algebra J21 ,
Mathematica Aeterna, 2015, 5(4): 599- 603.
[6] R. Bai, W. Guo, L. Lin, Structure of the 3-Lie algebra J11 , Mathematica
Aeterna, 2015, 5(4):593-597.
Received: October, 2015
Related documents