Download 3-Lie algebra Г21 over the prime field Z2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mathematica Aeterna, Vol. 5, 2015, no. 5, 739 - 743
3-Lie algebra Γ21 over the prime field Z2
BAI Ruipu
College of Mathematics and Information Science,
Hebei University, Baoding, 071002, China
email: [email protected]
LIN Lixin
College of Mathematics and Information Science,
Hebei University, Baoding, 071002, China
BAI Jin
College of Mathematics and Information Science,
Hebei University, Baoding, 071002, China
Abstract
The 8-dimensional 3-Lie algebra Γ21 over the prime field Z2 is constructed by 2-cubic matrix, and the structures of it is studied. It is
proved that Γ21 is a solvable but non-nilpotent 3-Lie algebra. The inner derivation algebra ad(Γ21 ) is a 12-dimensional solvable but nonnilpotent Lie algebra, and the derivation algebra Der(Γ21 ) with dimension 17 is unsolvable. And the concrete expression of all derivations are
given.
2010 Mathematics Subject Classification: 17B05 17D30
Keywords: N-cubic matrix, 3-Lie algebra, derivation, prime field.
1
Introduction
In papers [1, 2], authors constructed 3-Lie algebras by well known algebras
and linear functions, derivations and involutions. In paper [3], 3-Lie algebras
are constructed by N-cubic matrix over the field F with chF 6= 2. Bai, Guo,
and Lin in papers [4, 5] discussed 3-Lie algebras J11 and J21 which are realized
by 2-cubic matrix over a field F with characteristic chF 6= 2. In this paper, we
pay our main attention to 8-dimensional 3-Lie algebras which are constructed
by 2-cubic matrix in the prime field Z2 = {0, 1}. In the following we suppose
740
Bai Ruipu, Lin Lixin, Bai Jin
that Z2 = {0, 1} is the prime field with characteristic two, for a vector space
V and a subset S, the subspace generated by S is denoted by (S).
2
Structure of 3-Lie algebras Γ21
First we introduce some notations. An N-order cubic matrix A = (aijk ) over
the field Z2 is an ordered object which the elements with 3 indices, and the
element in the position (i, j, k) is (A)ijk = aijk , 1 ≤ i, j, k ≤ N and aijk = 0
or 1. Denote the set of all cubic matrix over Z2 by Ω. Then Ω is an N 3 dimensional vector space with A + B = (aijk + bijk ) ∈ Ω, λA = (λaijk ) ∈ Ω,
for ∀A = (aijk ), B = (bijk ) ∈ Ω, λ ∈ Z2 , that is, (A + B)ijk = aijk + bijk ,
(λA)ijk = λaijk . Denote Eijk = (eh1 h2 h3 ), where eh1 h2 h3 = δh1 i δh2 j δh3 k , that
is when h1 = i, h2 = j, h3 = k, eh1 h2 h3 = 1, and elsewhere are zero. Then,
{Eijk | 1 ≤ i, j, k ≤ n} is a basis of Ω.
For all A = (aijk ), B = (bijk ) ∈ Ω, define the multiplication ∗21 in Ω by
(A ∗21 B)ijk =
n
X
aqjp bipk , 1 ≤ i, j, k ≤ n.
(1)
p,q=1
Denote hAi1 =
N
P
(A)pqq =
p,q=1
N
P
p,q=1
apqq , Then h i1 is a linear function from
Ω to Z2 and satisfies
hA ∗21 Bi1 = hB ∗21 Ai1 .
(2)
Define the multiplication [, , ]21 : Ω ∧ Ω ∧ Ω → Ω as follows:
[A, B, C]21 = hAi1 (B ∗21 C − C ∗21 B)
+hBi1 (C ∗21 A − A ∗21 C) + hCi1 (A ∗21 B − B ∗21 A).
(3)
Theorem 2.1[3] The linear space Ω is a 3-Lie algebra in the multiplication
[, , ]21 , which is denoted by Γ21 , the multiplication [, , ]21 is simply denoted by
[, , ].
In the following we denote Ω2 the vector space over Z2 = {0, 1} which
consists of 2-cubic matrix. Then the dimension of Ω2 is eight and with a
basis {E111 , E112 , E121 , E122 , E211 , E212 , E221 , E222 }. And for all A ∈ Ω2 , A =
2
P
i,j,k=1
λijk Eijk , λijk = 1, 0 ∈ Z2 .
Theorem 2.2.
The multiplication of the 3-Lie algebra Γ21 in the basis
741
3-Lie algebra Γ21 over the prime field Z2
{E111 , E112 , E121 , E122 , E211 , E212 , E221 , E222 } is as follows



































































[E111 , E112 , E121 ] = E111 + E122 ,
[E112 , E121 , E122 ] = E111 + E122 ,
[E212 , E221 , E222 ] = E211 + E222 ,
[E111 , E121 , E211 ] = E221 + E121 ,
[E111 , E121 , E212 ] = E222 + E111 ,
[E121 , E122 , E212 ] = E111 + E222 ,
[E111 , E122 , E221 ] = E221 + E121 ,
[E112 , E122 , E221 ] = E122 + E211 ,
[E111 , E122 , E222 ] = E222 − E122 ,
[E211 , E221 , E111 ] = E121 + E221 ,
[E221 , E222 , E111 ] = E121 + E221 ,
[E211 , E221 , E112 ] = E122 + E211 ,
[E211 , E212 , E121 ] = E111 + E222 ,
[E212 , E222 , E121 ] = E222 + E111 ,
[E211 , E212 , E122 ] = E112 + E212 ,
[E212 , E221 , E122 ] = E211 + E222 ,
[E111 , E122 , E211 ] = E111 + E211 ,
[E211 , E212 , E221 ] = E211 + E222 ,
[E211 , E222 , E111 ] = E211 + E111 ,
[E112 , E121 , E211 ] = E111 + E122 ,
[E111 , E122 , E212 ] = E112 + E212 ,
[E111 , E112 , E221 ] = E211 + E122 ,
[E121 , E122 , E211 ] = E121 + E221 ,
[E111 , E112 , E222 ] = E212 + E112 ,
[E112 , E121 , E222 ] = E111 + E122 ,
[E212 , E221 , E111 ] = E211 + E222 ,
[E112 , E122 , E222 ] = E212 + E112 ,
[E211 , E222 , E112 ] = E212 + E112 ,
[E211 , E222 , E121 ] = E121 + E221 ,
[E221 , E222 , E112 ] = E211 + E112 ,
[E211 , E222 , E122 ] = E122 + E222 ,
[E212 , E222 , E122 ] = E112 + E212 ,
(4)
where the zero product of the basis vectors are omitted.
Proof The result follows from the direct computation according to the
definition of ∗21 and Eqs.(1), (2) and (3).
For studying the structure of the 3-Lie algebra Γ21 , we need to find a special
basis to simplify its multiplication.
Theorem 2.3 The 3-Lie algebra Γ21 is a non-nilpotent indecomposable
3-Lie algebra with a basis e1 = E111 , e2 = E112 , e3 = E121 , e4 = E111 + E122 ,
e5 = E211 + E111 ,e6 = E212 + E112 , e7 = E221 − E121 , e8 = E122 + E222 . And the
multiplication in it is as follows:



[e1 , e2 , e3 ] = e4 , [e1 , e4 , e5 ] = e5 , [e1 , e3 , e6 ] = e8 ,
[e1 , e3 , e5 ] = e7 , [e1 , e4 , e6 ] = e6 , [e1 , e2 , e8 ] = e6 ,


[e1 , e2 , e7 ] = e5 , [e1 , e4 , e7 ] = e7 , [e1 , e4 , e8 ] = e8 .
(5)
Proof It is clear that {e1 , · · · , e8 } is a basis of Ω2 . By the definition of
∗21 , we obtain Eq.(5). Since Γ21 can not be written as the direct sum of two
proper ideals, Γ21 is indecomposable.
From Γ121 = [Γ21 , Γ21 , Γ21 ] = (e4 , e5 , e6 , e7 , e8 ), Γ221 = [Γ121 , Γ21 , Γ21 ] = (e5 , e6 ,
e7 , e8 ), and Γ321 = [Γ221 , Γ21 , Γ21 ] = (e5 , e6 , e7 , e8 ), then for all positive integer
s > 1, we have Γs21 = Γ221 6= 0. Therefore, Γ21 is non-nilpotent.
Theorem 2.4 The subalgebra H = (e1 , e2 , e3 , e4 ) is a Cartan subalgebra
of the 3-Lie algebra Γ21 . And the decomposition of Γ21 associate to H is
Γ21 = H +̇Γα , and Γα = (e5 , e6 , e7 , e8 ) = {e ∈ Γ21 | (ad(h1 , h2 ) +α(h1 , h2 ))2 (e) =
0, ∀h1 , h2 ∈ H}, where α ∈ (H ⊗ H)∗ , α(e1 , e4 ) = 1, and others are zero.
742
Bai Ruipu, Lin Lixin, Bai Jin
Proof From Theorem 2.3, H = (e1 , e2 , e3 , e4 ) is a Cartan subalgebra of
Γ21 . Denote α : H ⊗ H → Z2 , α(e1 , e4 ) = 1, α(e1 , e2 ) = α(e1 , e3 ) = α(e2 , e3 )
= α(e2 , e4 ) = α(e3 , e4 ) = 0, we have ad(e1 , e4 )(e5 ) = e5 , ad(e1 , e4 )(e6 ) =
e6 , ad(e1 , e4 )(e7 ) = e7 , ad(e1 , e4 )(e8 ) = e8 , ad2 (e1 , e2 )ei = ad2 (e1 , e3 )(ei ) =
ad2 (e2 , e3 )(ei ) = 0, ad2 (e2 , e4 )(ei ) = ad2 (e3 , e4 )(ei ) = 0, i = 5, 6, 7, 8. We
obtain the result.
Now we study the inner derivation algebra ad(Γ21 ). For ei , ej ∈ Ω2 , denote
P
ij
ji
ad(ei , ej )ek = 8l=1 aij
kl el , where akl = aP
kl = 0 or 1 ∈ Z2 . Then the matrix form
of ad(ei , ej ) in the basis e1 , · · · , e8 is 8k,l=1 aij
kl Ekl , where Ekl are the matrix
units.
Theorem 2.5 the inner derivation algebra ad(Γ21 ) is solvable but nonnilpotent Lie algebra with dimension 12, and X1 = E34 + E75 + E86 , X2 =
E24 + E57 + E68 , X3 = E55 + E66 + E77 + E88 , X4 = E37 + E45 , X5 = E38 +
E46 , X6 = E25 +E47 , X7 = E26 +E48 , X8 = E14 , X9 = E15 , X10 = E16 , X11 =
E17 , X12 = E18 is a basis. And the multiplication in it is

























[X2 , X1 ] = X3 ,
[X1 , X7 ] = X5 ,
[X2 , X4 ] = X6 ,
[X2 , X5 ] = X7 ,
[X3 , X4 ] = X4 ,
[X3 , X5 ] = X5 ,
[X4 , X8 ] = X9 ,
[X1 , X6 ] = X4 , [X7 , X8 ] = X12 ,
[X1 , X11 ] = X9 , [X3 , X12 ] = X12 ,
[X1 , X12 ] = X10 , [X3 , X10 ] = X10 ,
[X2 , X10 ] = X12 , [X3 , X11 ] = X11 ,
[X2 , X9 ] = X11 , [X3 , X6 ] = X6 ,
[X3 , X7 ] = X7 , [X3 , X9 ] = X9 ,
[X6 , X8 ] = X11 , [X5 , X8 ] = X10 .
(6)
Proof By a direct computation according to Eq.(5) we have ad(e1 , e2 ) =
E34 + E75 + E86 , ad(e1 , e3 ) = E24 + E57 + E68 , ad(e1 , e4 ) = E55 + E66 +
E77 + E88 , ad(e1 , e7 ) = E25 + E47 , ad(e1 , e6 ) = E38 + E46 , ad(e1 , e5 ) = E37 +
E45 , ad(e1 , e8 ) = E26 + E48 , ad(e2 , e3 ) = E14 , ad(e2 , e7 ) = E15 , ad(e2 , e8 ) =
E16 , ad(e3 , e5 ) = E17 , ad(e3 , e6 ) = E18 . Then {X1 , · · · , X12 } is a basis of
ad(Γ21 ). From [ad(ei , ej ), ad(ek , el )]= ad([ei , ej , ek ], el )+ad(ek , [ei , ej el ]), we obtain Eq.(6). And
ad1 (Γ21 ) = [ad(Γ21 ), ad(Γ21 )] = (X3 , X4 , X5 , X6 , X7 , X9 , X10 , X11 , X12 ),
ad2 (Γ21 ) = (X4 , X5 , X6 , X7 , X9 , X10 , X11 , X12 ), ads (Γ21 ) = ad2 (Γ21 ) 6= 0,
for s > 2, then ad(Γ21 ) is non-nilpotent.
By ad(1) (Γ21 ) = ad1 (Γ21 ), ad(2) (Γ21 ) = (X4 , X5 , X6 , X7 , X9 , X10 , X11 , X12 ),
ad(3) (Γ21 ) = (X9 , X10 , X11 , X12 ), ad(4) (Γ21 ) = 0, ad(Γ21 ) is solvable. The proof
is completed.
Now,we discuss the derivation algebra Der(Γ21 ).
Theorem 2.6 The derivation algebra Der(Γ21 ) is an unsolvable Lie algebra with dimension 17, and the multiplication in the basis {X1 , · · · , X17 },
where X1 = E34 + E75 + E86 , X2 = E24 + E57 + E68 , X3 = E55 + E66 + E77 + E88 ,
X4 = E37 + E45 , X5 = E38 + E46 , X6 = E25 + E47 , X7 = E26 + E48 , X8 = E14 ,
X9 = E15 , X10 = E16 , X11 = E17 , X12 = E18 , X13 = E11 + E44 + E77 + E88 ,
3-Lie algebra Γ21 over the prime field Z2
743
X14 = E22 +E33 +E77 +E88 , X15 = E55 +E77 , X16 = E56 +E78 , X17 = E65 +E87
is as follows











































[X2 , X1 ] = X3 , [X1 , X6 ] = X4 , [X1 , X13 ] = X1 , [X2 , X13 ] = X2 ,
[X1 , X7 ] = X5 , [X1 , X11 ] = X9 , [X4 , X13 ] = X4 , [X5 , X13 ] = X5 ,
[X2 , X4 ] = X6 , [X1 , X12 ] = X10 , [X9 , X13 ] = X9 , [X10 , X13 ] = X10 ,
[X2 , X5 ] = X7 , [X2 , X10 ] = X12 , [X3 , X4 ] = X4 , [X2 , X9 ] = X11 ,
[X3 , X5 ] = X5 , [X3 , X6 ] = X6 , [X4 , X15 ] = X4 , [X6 , X15 ] = X6 ,
[X3 , X7 ] = X7 , [X3 , X11 ] = X11 , [X9 , X15 ] = X9 , [X11 , X15 ] = X11 ,
[X3 , X9 ] = X9 , [X3 , X10 ] = X10 , [X4 , X16 ] = X5 , [X6 , X16 ] = X7 ,
[X4 , X8 ] = X9 , [X3 , X12 ] = X12 , [X9 , X16 ] = X10 , [X11 , X16 ] = X12 ,
[X6 , X8 ] = X11 , [X7 , X8 ] = X12 , [X5 , X17 ] = X4 , [X7 , X17 ] = X6 ,
[X5 , X8 ] = X10 , [X10 , X17 ] = X9 , [X12 , X17 ] = X11 , [X15 , X16 ] = X16 ,
[X15 , X17 ] = X17 , [X16 , X17 ] = X3 .
Proof By a direct computation according to the multiplication (5), X1 ,
· · · , X17 is a basis of Der(Γ21 ), and with the above multiplication. Since
Der (1) (Γ21 ) = (X1 , X2 , X3 , X4 , X5 , X6 , X7 , X9 , X10 , X11 , X12 , X16 , X17 ),
Der (2) (Γ21 ) = (X3 , X4 , X5 , X6 , X7 , X9 , X10 , X11 , X12 , X16 , X17 )
= Der (s) (Γ21 ) 6= 0 for all s > 2, we obtain the result.
Acknowledgements
The first author (R.-P. Bai) was supported in part by the Natural Science
Foundation (11371245) and the Natural Science Foundation of Hebei Province
(A2014201006).
References
[1] R. Bai,Y. Wu, Constructions of 3-Lie algebras, Linear and Multilinear
Algebra, 2015, 63(11): 2171-2186.
[2] A. Pozhidaev, Monomial n-Lie algebras, Algebra Log. 1998, 37(5):307-322.
[3] R. Bai, H. Liu, M. Zhang, 3-Lie Algebras Realized by Cubic Matrices,
Chin.Ann. Math., 2014, 35B(2): 261-270.
[4] R. Bai, L. Lin, W. Guo, Structure of 8-dimensional 3-Lie algebra J21 ,
Mathematica Aeterna, 2015, 5(4): 599- 603.
[5] R. Bai, W. Guo, L. Lin, Structure of the 3-Lie algebra J11 , Mathematica
Aeterna, 2015, 5(4):593-597.
Received: October, 2015
Related documents