Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Competency standard : Solve problems related to the concept of operating the real. Hal.: 2 Isi dengan Judul Halaman Terkait Adaptif Learning Materials : System Real Numbers On integer operations Operations on Numbers fraction Conversion Numbers Comparison, scale and Percent Implementation of Real Numbers In completing the Program Expertise . Hal.: 3 Isi dengan Judul Halaman Terkait Adaptif basic competence 1 : Applying the operation on the real . Hal.: 4 Isi dengan Judul Halaman Terkait Adaptif 1. System real number Learning Objectives : Students can: Distinguish the various real Hal.: 5 Isi dengan Judul Halaman Terkait Adaptif Scheme real number : Real number Rational number Fraction number Integer Positive integer (natural number) Prime number Hal.: 6 Irrational number 0(zero) 1 Negative integer Composite number Isi dengan Judul Halaman Terkait Finish Adaptif Rational numbers Rational number is number that can be expressed with the form a b where a and b integer . example : 5/6, 7/8 ,-3/4, etc. Hal.: 7 Isi dengan Judul Halaman Terkait Adaptif Irrational number is number that can not be expressed with the form a b example : Hal.: 8 5, 7, ∏, etc. Isi dengan Judul Halaman Terkait Adaptif 2. integer operations Learning objectives : Students can : Complete the operation Answer and integer . 1. Complete the operation multiplication and division of integer . 2. Hal.: 9 Isi dengan Judul Halaman Terkait Adaptif a. Addition and subtraction addition integer can equipment with equipment or the movement along the track represents the number lines. First on the positive integer and zero, and then to develop a rounded whole. One model of learning to use the steps in the line is to make agreements, for example: Addition : Positive, advanced Negative, back Subtraction : Positive, advanced Negative, back Hal.: 10 Isi dengan Judul Halaman Terkait Adaptif -2 + 3 = .... step 3 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -2 So that the results of the additional Hal.: 11 : -2 + 3 = 1 Isi dengan Judul Halaman Terkait Adaptif 5 + (-2) = .... step 5 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 2 So that the results of the additional Hal.: 12 : 5 + (-2) = 3 Isi dengan Judul Halaman Terkait Adaptif -2 - (-5) = .... step -7 -6 -2 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -5 So that the results of the additional : -2 - (-5) = 3 etc Hal.: 13 Isi dengan Judul Halaman Terkait Adaptif b. Integer multiplication Multiplication and division of integer is the development of multiplication and division of the original. Which is still a problem is often a sign of problems in the operation. Can be explained with the pattern, for example, how to fill the box. . . in the table below: –3 –2 –1 0 1 2 3 1 ... ... ... 0 1 2 3 0 ... ... ... 0 0 0 0 –1 ... ... ... 0 ... ... ... So that will be obtained: Results marked with the same time the number of positive results and if the sign is negative the result is different, and each number (rounded) 0 multiplied by the result 0 (zero). Hal.: 14 Isi dengan Judul Halaman Terkait Adaptif c. Integer division With a distribution of b is declared with a: b or a: b = c if and only if a = b x c. 0 Implications, among other : 0 b 0 c b 0, 1). For each 0 0 0 b 0 : b = 0 because 0 x b = 0 0 = 0 b correct 2). c x 0 0 = 0 c. because 0 c =00 for each c, then c how can any value, including negative numbers, the results 0 of c : 0 said not a . a c 0 3). For each a 0, a : 0 = c may not happen, because there is no value c that a 0 meet the a = c 0, or frequently stated ∞ the result is not defined. Hal.: 15 Isi dengan Judul Halaman Terkait Adaptif 3. Fraction number Initial concept of a fraction is part of the whole (with the buckle geometry) instance : 3 16 1 4 How the operation fraction number ? instance : that this result can equipment 6 12 Hal.: 16 3 4 3 4 Isi dengan Judul Halaman Terkait 2 3 Adaptif exercise 1. Ali has 2 meter wire, will be given to friends to create interest. If each person gets the 2 / 5 meters, how many people get that part? 2. Of 2 ¾ kg sugar akan made bread recipe. If a recipe requires sugar as much as ½ kg. How many bread recipes that can be made? 3. If a job is done by 4 people will finish in 30 days. If done by the usual 6 will be completed within 80 days. How much time needed to complete the work if it is done jointly by the 3 and 4 experienced people? Hal.: 17 Isi dengan Judul Halaman Terkait Adaptif 4. The fractional conversion Change the Ordinary to the fraction or a decimal fraction . Change the Ordinary to the form of a fraction or vice versa Percent . Fractional change to Decimal Percent of, or otherwise . Hal.: 18 Isi dengan Judul Halaman Terkait Adaptif Change the fraction to fraction Ordinary Decimal Change the Ordinary to fraction decimal fraction, or vice versa. Example : 3 = ….. Do with the usual . 4 0,7 = 7/10 0,08 = 8/100 = 2/25, etc. Hal.: 19 Isi dengan Judul Halaman Terkait Adaptif Change the fraction to the percent of To change the fraction to a normal form of percent, we multiply the fraction by 100% . Meanwhile, to change the percent into a fraction of normal, we must divide the number by 100 percent . Hal.: 20 Isi dengan Judul Halaman Terkait Adaptif example 4/5 = …… % = 4/5 x 100 % = 80 % 2/3 = …… % = 2/3 x 100 % = 66 2/3 % 15 % = …… = 15/100 = 3/20 etc. Hal.: 21 Isi dengan Judul Halaman Terkait Adaptif Change the fraction to a decimal form of a percent To change a decimal to fraction of percent, we multiply the fraction by 100%. Meanwhile, to change the form of a percent into a decimal fraction, we must divide the number by 100 percent. Hal.: 22 Isi dengan Judul Halaman Terkait Adaptif example 0,03 = ……% = 0,03 x 100% = 3% 0,056 = ……% = 0,056 x 100% = 5,6% 35% = ……. (decimal fraction ) = 35/100 = 0,35 425% = ……… = 425/100 = 4,25 etc. Hal.: 23 Isi dengan Judul Halaman Terkait Adaptif exercise 1. Indicate the following fraction into the form of a decimal and percent : a. 3/5 c. 2/3 (three decimal places ) b. 7/8 d. 5/6 (three decimal places ) 2. Specify the form of a percent below the fraction and decimal fraction normal : a. 35% c. 12 ½ % b. 8 % d. 16 2/3 % Hal.: 24 Isi dengan Judul Halaman Terkait Adaptif 5. ratio There are two kinds of comparisons, namely: 1. Comparison worth . 2. Comparison Value turn . Try our eye on each comparison is . Hal.: 25 Isi dengan Judul Halaman Terkait Adaptif Kind of comparison Worth Turn value Many (Fruit) Price (Rupiah) Speed. (Km / hr) Time (Hours) 1 2 3 4 … 6 … x 200 400 … … … … … … 60 30 20 … … 5 … x 1 2 … … … … … … Hal.: 26 Isi dengan Judul Halaman Terkait Adaptif Kind of comparison Comparison worth a = k b, k R when b then a, proportionate increase in straight when b then a , proportionate increase in straight instance : s=vt Comparison Value turn when b then a when b then a instance : v = s/t Hal.: 27 Isi dengan Judul Halaman Terkait Adaptif Comparison of advanced Learning Experience With 24 workers, a job is complete bulk sewing planned within 48 days. After working for 12 days with 24 workers, stopped work for 9 days because of it. How many workers who should be added so that work can be completed on time? Hal.: 28 Isi dengan Judul Halaman Terkait Adaptif Concerning the settlement of the above : Turn the value of comparison, so that: The remaining work to 48–12 = 36 day which should be completed by 24 people. But the only remaining 48–12–9 = 27 day. So obtained: 24 people 36 day x people 27 day 24 27 864 then: x = 36/27 x 24 = 32 27 x 24.36 27 x 864 x x 32 x 36 27 So the additional 8 workers Hal.: 29 Isi dengan Judul Halaman Terkait Adaptif example 1. With fixed velocity, a car requires 5 liters of petrol to 60 km distance. How many liters of gasoline needed to travel 150 km distance? 2. The distance between two cities can be a vehicle with an average speed of 72 km / hr for 5 hours. What is the average speed of vehicles to travel long distances if the 8 hours? Hal.: 30 Isi dengan Judul Halaman Terkait Adaptif solution: Because comparison worth then : 150/60 x 5 km = 12,5 liters. Comparison value turn, then : 5/8 x 72 km/hr 72 8 = x45 km/hr. 5 Hal.: 31 Isi dengan Judul Halaman Terkait Adaptif exercise 1. Making cake mix liquids consisting of coconut oil and water with the comparison 1: 18. How many liters of coconut oil is needed to obtain 9.5 liters of fluid mixtures? 2. A map of the oblong drawn with scale: 1: 120,000 and has a length: width is 4:3. Meanwhile, around 112 cm map. actually a broad set described by this map? Hal.: 32 Isi dengan Judul Halaman Terkait KE MENU AWAL Adaptif Basic competence 2 : Applying the operation have an important position on the number. Hal.: 33 Isi dengan Judul Halaman Terkait Adaptif learning materials : Concepts have an important position and the nature-nature. Numbers have an important position in the operation. The simplification have an important position. Hal.: 34 Isi dengan Judul Halaman Terkait Adaptif exponent Ex: IN PROCESS AMUBA cleavage SEL Hal.: 35 Isi dengan Judul Halaman Terkait Adaptif Learning objectives 1. Explain the definition of rank 2. Explain the nature have an important position 3. Have an important position to operate the appropriate concept unanimously positive. Hal.: 36 Isi dengan Judul Halaman Terkait Adaptif The designation ON REAL Numbers If a number is real and n is a positive integer, then an is defined as a multiple of n times, written a =axaxax...xa n n factor with, a is a form of public have an important position of the n, a called the principal or base , a R, n called the rank of (exponent) Hal.: 37 Isi dengan Judul Halaman Terkait Adaptif start Looking exponent = looking logarithm = 2048 2... 2log ? 2 3 4 5 6 2 4 8 16 32 64 ? 2 22 2 Numbers have an important position notation Hal.: 38 20 21 22 2 23 … 9 11 512 ? … 2048 2?9? 2211? 2 2222 1 1 222 after … PERIOD many amuba 2048 = ... 24 25 2...6 Isi dengan Judul Halaman Terkait Adaptif definition : a1 = a an a a a a ... n factor form a Are all the results obtained form of rational number? What rational number with the rank of integer numbers is always rational? Whether the division of two rational number (not a divider 0) always produce rational number? How does nature have an important position the operation? Hal.: 39 Isi dengan Judul Halaman Terkait Adaptif Consider the following examples : 7 . 2 = 2 x 2 x 2 x 2 x 2 x 2 x 2, 7 factor 5 • (-3) = (-3) x (-3) x (-3) x (-3) x (-3) 5 factor • 1 8 1 1 1 1 1 1 1 1 x x x x x x x 2 2 2 2 2 2 2 2 2 8 factor In the example above, 2, -3, and is a number (base), while 7, 5, and 8 is the rank of (exponent). Hal.: 40 Isi dengan Judul Halaman Terkait Adaptif The attributes have an important position : Attributes have an important position with the designation unanimously positive is as follows. Suppose a, b R, and m, n is a positive integer, then a m x a n a m n S-1 a m : a n a mn , m n S-2 (a m ) n a mn S-3 S-4 S-5 ( a x b) n a n x b n n an a n ,b 0 b b Hal.: 41 Isi dengan Judul Halaman Terkait Adaptif : With experiment 2222 4 factor number 2 2 2 2 2 2 2 6 factor number 2 Means 24+6 = 210 (4 + 6) factor number 2 kkkkkkkkk kk k 3 factor number k 9 factor number k Means k3+9 (3 + 9) factor number k aaa…a a a a … a p factor number a q factor number a (p + q) factor number a Contoh: 32 33 = 32+3 35 = 76 713= 76+13 = 319 Hal.: 42 = k12 Means ap+q ap aq = ap+q x5 x 12= x5+12 = x17 4 3 5 3 45 3 9 3 4 4 4 4 Isi dengan Judul Halaman Terkait Adaptif With experiment: ? 2 2 2 2 2 2 result ( = ) 2=232 = 227 - 4 27 : 24 = 2 __________ 2222 Means 27 : 24 = 27 - 4 p factor number a aax__________ aaxaaxa… ax a a … a = = a a a... a a a a … a (p >q) p – q factor q factor number a p : aq = p-q Means a =a Example: ap - q 8 5 85 3 6 4 2 2 2 2 3 :3 = : 3 = 3 3 3 3 13-8 5 13 8 7 = 7 7 :7 = ap : aq Hal.: 43 Isi dengan Judul Halaman Terkait Adaptif With experiment: b ap p p p p a a a a b b b b p factors p number of factors a b ap ap aaaaaa…a _______________________ = = ____ bbbbbb…b bp p number of factors b ap p ____ a therefore : b bp Hal.: 44 Isi dengan Judul Halaman Terkait Adaptif exercise Write operation results in the following form of the most simple: 1. 94 = …… 36 2. 53 x 23 = …… 3. 103 23 Hal.: 45 = …….. Isi dengan Judul Halaman Terkait Adaptif Basic competence 3 : Applying the operation on the Irrasional. Hal.: 46 Isi dengan Judul Halaman Terkait Adaptif Learning materials : The concept of the Irrasional Production Numbers In the form of roots. Simplification of the root. Hal.: 47 Isi dengan Judul Halaman Terkait Adaptif Learning objectives 1. Explain the definition irrasional 2. Operate a number of roots. 3. Simplify the number irrasional. Hal.: 48 Isi dengan Judul Halaman Terkait Adaptif Root ( apersepsi ) The Square Root Extent of a garden 225 m2. If the garden is shaped square, the length of the garden? Square footage is 15 m, from 225 15 because 152 = 225. Root of the withdrawal process For each a 0 and b 0, b a if and only if a2 = b Why b can not be negative? Hal.: 49 Isi dengan Judul Halaman Terkait Adaptif Learning experience mr Karyo have sebidang the extent of land recorded in the Office land is 1369 m2. In fact the form of a square yard. How long is the size of the ground yards? How many meters of iron rod to create the necessary framework of iron below 12 m 6m 12 m Hal.: 50 Isi dengan Judul Halaman Terkait Adaptif how the value of : 4 (3) 2 Settlement: 4 4 (3) 2 4 9 4 3 2 3 2 4 (3) (3) 3 2 Which is true! Hal.: 51 Isi dengan Judul Halaman Terkait Adaptif example: how the value of 1369 m2 30 m hm (1) 30 m 1369 berapa meter? (1) (2) (3) h m (2 30 + h)m 30 m 900 m2 (2) 30 m hm (3) hm then: 2 30h + h2 = 1369 – 900 (2 30 + ….) …. = 469 Retrieved Hal.: 52 :h=7 So the result 37 Isi dengan Judul Halaman Terkait Adaptif method can be written : 13 6 9 302 = 900 469 (2 30 + …) … = 469 0 Hal.: 53 = 30 + 7 (–) (–) Isi dengan Judul Halaman Terkait Adaptif Cube root Water tank inside the cuboid can accommodate as many as 8 m3 of water. Size of the bathtub? 8 m3 ?=p Cistern size is 2 m, of p 3 3 Hal.: 54 pp=8p=2 8 2 a b because 23 = 8. If and only if b3 = a Isi dengan Judul Halaman Terkait Adaptif 3 example, how the value of : (p + s)3 = p3 + 3p2s + 3ps2 + s3 20 +...... 6 3 202 3 17576 =? 203 = 8 0 0 0 3 20 17576 =? = p3 + (3p2 + 3ps + s2 )s 9576 6 (1200 + 60 6... + ...6 2) ... 0 so: Hal.: 55 3 1 7 5 7 6 = 26 Isi dengan Judul Halaman Terkait Adaptif Root operation ab Basic Operation : n ab n a b For a 0 and b 0 n a b n A, n 2, n n a = a, from n a real. Answer and Reduction can be simplified if a similar radical example : 75 147 48 =5 3 7 3 4 3 =(5–7+4) 3 =2 3 Multiple forms of Roots with the nature n a n b n a.b The form of the distribution of roots a a , for a 0 and b 0 b b Hal.: 56 Isi dengan Judul Halaman Terkait Adaptif root Rationalizing the denominator of a fraction a or b Forms: 6 2 6 x 2 a b 2 multiplying 6 2 2 2 b b 3 2 forms:(ab + cd) where a, b, c, and d rasional, and at least one of the b and d irrational a b c d ........ ........ x = a bc d a bc d a b c d 1 1 Hal.: 57 2 1 1 2 1 2 x 2 1 1 2 2 2 3 2 2 2 2 2 3 1 2 1 2 Isi dengan Judul Halaman Terkait Adaptif Basic competence 4 : Applying the concept of logarithm Hal.: 58 Isi dengan Judul Halaman Terkait Adaptif Learning materials : The concept of logarithm The logarithm operation. Hal.: 59 Isi dengan Judul Halaman Terkait Adaptif Learning objectives 1. 2. 3. 4. Hal.: 60 Explain the concept of logarithm Explain the nature logarithm. Logarithm operation with nature logarithm. Problem solving program expertise relating to the logarithm. Isi dengan Judul Halaman Terkait Adaptif LOGARITHM In the form of 2log 128 2 is the base logarithm 2log 128 = 7 27 = 128 In general it was stated that : alog b=c In the form of alog b b is the base logarithm alog b = c ac = b c replaced alog b c = alog b Appropriate number of discussion c = b have an important position, then a > a alog b 0, b > 0 and a 1, because 1log b = c 1c = b, for b 1 never found a = b value of c. logarithm of b to the base a ditulis alog b is number if a exponent number result of b Hal.: 61 Isi dengan Judul Halaman Terkait Adaptif LOGARITHM Note : ab = c ab = …. c alog Hal.: 62 …b = c a... = c search results promotion find square root of b find that designation of a result c = find that designation of a result c = alog c = … b = c ac = b with a > 0 , a 1 and b > 0 Isi dengan Judul Halaman Terkait Adaptif The properties of logarithm : if a > 0 , a 1 , m > 0 , n > 0 and x R, then : 1. alog a ax = x logn n 2. a 3. a q log a p p q 4. alog (m.n) = alog m + alog n 5. alog (m/n) = alog m - alog n 6. alog mx = x. alog m g 7. alog Hal.: 63 m= log m if g > 0 , g 1 etc. g log a Isi dengan Judul Halaman Terkait Adaptif exercise: 1. Simple form of 2log 4 + 2log 12 – 2log 6 is ….. a. 2 2. If known b. 3 3log c. 4 d. 6 e. 8 2 = p, then 9log 8 is... . 3. if 5log 2 = p then log 2,5 = … Hal.: 64 Isi dengan Judul Halaman Terkait Adaptif exercise: An optical equipment needed to observe the stars at the top to a height of six, the limit of naked eye view. However, the tool has limitations. L limit the height of a telescope with optical inch in diamater D formulated in L = 8.8 + 5.1 log D a. Look for the height limit for the telescope similar to the 6 inch diameter . b. Find the diameter of a lens that has a height limit of 20.6. Hal.: 65 Isi dengan Judul Halaman Terkait Adaptif Competency standards : Solve problems related to the concept of matrix. Hal.: 67 Isi dengan Judul Halaman Terkait Adaptif Learning materials: Kind of Matrix. Matrix operation. Hal.: 68 Isi dengan Judul Halaman Terkait Adaptif Basic competence 1 : Describe your kind of matrix. Hal.: 69 Isi dengan Judul Halaman Terkait Adaptif Learning objectives 1. 2. 3. 4. 5. Hal.: 70 Explaining the matrix Explain the notation and matrix-element. Distinguish the type of matrix. Complete similarity matrix. Explaining Transpose Matrix. Isi dengan Judul Halaman Terkait Adaptif Matrix Matrix is the order of the numbers-which consists of these lines and columns. Each number in the matrix is called the entry or elements. Ordo (size) of the matrix is the number of rows times the number of columns. Notation: Matrix: A = [aij] Element: (A)ij = aij Ordo A: m x n Hal.: 71 A= a11 a21 : ai1 : am1 a12…….a1j ……a1n a22 ……a2j…….a2n : : : ai2 ……aij…….. ain : : : am2……amj……. amn row column Isi dengan Judul Halaman Terkait Adaptif General form Matrix a11 a12 a1n a a a 2n 21 22 A= am1 am 2 amn Hal.: 72 Isi dengan Judul Halaman Terkait Adaptif example: P= 2 1 8 7 Ordo 4 11 6 5 1 matrix P = 3 x 3 Entry that is located on line 1 column 2 is 1 Entry that is located on the first row third column is Members of the matrix P in row 3 = 6 6 Members of the matrix P in column 1 = Hal.: 73 Isi dengan Judul Halaman Terkait 5 1 2 7 6 Adaptif SQUARE MATRIKS Matrix is a square matrix is the number of rows and columns the same number of. Trace(A) = 1 + 2 + 3 1 2 4 2 2 2 3 3 3 Main diagonal Trace from matriks is sum the diagonal elements of the main Hal.: 74 Isi dengan Judul Halaman Terkait Adaptif Zero matrix and identity zero matrix is matrix of all elements zero 0 0 0 0 0 0 0 identity matrix is a square matrix of elements of main diagonal elements 1 and other 0 I3 I2 Hal.: 75 I4 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 Isi dengan Judul Halaman Terkait Adaptif Transpose A= 4 2 6 7 5 3 -9 7 AT = A’ = 4 5 2 3 6 -9 7 7 Definition: Transpose the matrix A is the matrix ATcolumns are rows of the A-line, lines is from the columns of A . [AT]ij = [A]ji nxm If A is m x n matrix, the matrix transpose AT size ……….. Hal.: 76 Isi dengan Judul Halaman Terkait Adaptif Properties matrix transpose 1. Transpose from matrix A transpose is A: (AT )T = A A (AT)T = A AT example: Hal.: 77 4 5 2 3 4 2 6 6 -9 5 3 -9 7 7 4 5 7 2 3 7 6 -9 7 7 Isi dengan Judul Halaman Terkait Adaptif Properties matrix transpose 2. (A+B)T = AT + BT T T A+B = A (A+B)T = AT Hal.: 78 T + B + T B Isi dengan Judul Halaman Terkait Adaptif Properties matrix transpose 3. (kA)T = k(A) T from scalar k T T kA k T (kA) Hal.: 79 = A T k(A) Isi dengan Judul Halaman Terkait Adaptif Properties matrix transpose 4. (AB)T = BT AT Hal.: 80 B AB = T (AB) = BTAT AB T T T Isi dengan Judul Halaman Terkait A Adaptif matrix symmetry Matrix A is symmetry if and only if A = AT A= A = Hal.: 81 1 2 3 4 4 2 2 3 2 5 7 0 A’ = 3 7 8 2 4 0 2 9 4 2 2 3 A symmetry = AT Isi dengan Judul Halaman Terkait Adaptif orthogonal matrix Matrix A orthogonal if and only if AT = A –1 A= B= 0 -1 1 0 0 1 AT= ½√2 -½√2 ½√2 ½√2 BT= -1 0 = A-1 ½√2 ½√2 -½√2 ½√2 = B-1 (A A-1-1)T = (A ATT)-1 if A is orthogonal matrix, then (A-1)T = (AT)-1 Hal.: 82 Isi dengan Judul Halaman Terkait Adaptif similarity 2 matrix & summation 2 matrix Hal.: 83 Isi dengan Judul Halaman Terkait Adaptif similarity 2 matrix condition : * * have the same ordo The same entry and the same location for each i and j, aij = bij Hal.: 84 Isi dengan Judul Halaman Terkait Adaptif Similarity 2 matrix Two matrix with the same size and if each entry is associated same . A= 4 2 1 3 1 2 2 2 1 1 2 B= 1 2 4 2 1 3 A=B 1 2 3 2 1 3 2 4 x 2 4 2 2 2 2 2 2 2 2 ?2 2? 2? 4 5 6 ?4 5? 6? 9 0 7 ?9 0? 7? E= Hal.: 85 2 2 C= G= 1 D= F= H= Isi dengan Judul Halaman Terkait C≠D E = F if x = 1 G=H Adaptif example: find the values a, b , and If given matrix A = matrix B! Hal.: 86 Isi dengan Judul Halaman Terkait c Adaptif Example (next): a b 3 A= 5 b c 6 B= c Hal.: 87 3 4 a= - 5 b= -1 c5 = Isi dengan Judul Halaman Terkait Adaptif Basic competence 2 : Complete the operation matrix Hal.: 88 Isi dengan Judul Halaman Terkait Adaptif Learning objectives Explain the operation matrix. Complete the operation summation and reduction matrix. Complete the matrix multiplication operation with scalar. Complete the two matrix multiplication operations. Determine the inverse matrix square ordo two. Complete SPL with matrix. Hal.: 89 Isi dengan Judul Halaman Terkait Adaptif summation 2 matrix Procedure: Enumerate each entry / element A matrix with each entry / element matrix B which seletak (rows and columns the same) Hal.: 90 Isi dengan Judul Halaman Terkait Adaptif Summation and reduction two matrix example A= A+B= A-B= 10 22 1 -1 B= 10+2 10+2 22+6 22+6 1+7 1+7 -1+5 -1+5 10-2 22-6 1-7 -1-5 2 6 7 5 = = 12 12 28 28 88 4 8 16 -6 -6 • What two conditions so that the matrix can summand? •Answer: ordo two are the same matrix A = [aij] and B = [bij] the same size, A + B defined: (A + B)ij = (A)ij + (B)ij = aij + bij Hal.: 91 Isi dengan Judul Halaman Terkait Adaptif example: 4 2 A= 3 9 1 B= 3 A+B= Hal.: 92 5 1 ? Isi dengan Judul Halaman Terkait Adaptif answer : 4 A + B = 3 2 + 9 1 3 5 1 4 1 2 5 = 3 3 9 1 3 7 = 0 10 Hal.: 93 Isi dengan Judul Halaman Terkait Adaptif example: A= 11 3 4 2 9 6 7 0 5 B= 4 0 15 8 3 2 Find the value A + B! WHY ????? Hal.: 94 Isi dengan Judul Halaman Terkait Adaptif Condition 2 matrix can summand : * Hal.: 95 Have the same ordo Isi dengan Judul Halaman Terkait Adaptif Exercise 1 1. Find the value p, q, r, s,and t if given matrix A = matrix B with: 30 q 9 23 A= 16 p 5 150 20 92 68 4 40 51 B= 30 8 5 81 3x3 23 t r 9 40 10 s 51 2 p, q , r, s, t whole number Hal.: 96 Isi dengan Judul Halaman Terkait Adaptif Exercise 2 2. 11 9 4 A= 2 3 7 13 8 0 1 6 6 5 7 9 4 2 0 7 11 B= 4 6 4 12 9 1 8 9 3 9 2 8 Find the value A+B! Find the value B+A! Hal.: 97 Are the results the same? Isi dengan Judul Halaman Terkait Adaptif Solution for number 2 A+B= 0 11 3 9 7 1 4 13 6 8 6 2 5 7 9 4 + 2 0 7 11 4 6 12 4 9 1 8 9 3 9 2 8 9 4 13 3 2 18 7 2 = 0 19 3 18 6 20 8 4 Hal.: 98 Isi dengan Judul Halaman Terkait Adaptif Solution for number 2 B+A= 2 0 7 11 4 6 12 4 9 1 8 9 3 9 2 8 + 0 11 3 9 7 1 4 13 6 8 6 2 5 7 9 4 9 4 13 3 2 18 7 2 = 0 19 3 18 6 20 8 4 Hal.: 99 Isi dengan Judul Halaman Terkait Adaptif exercise: summation two matrix (next) K= C= C+D K+L 1 3 5 4 -9 7 0 9 -13 5 6 1 7 2 3 = = 7 3 1 -2 4 -5 9 -4 3 L = 25 30 5 35 10 15 D = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? D+C = L+K = What conclusions you? summation whether the matrix is commutative? Hal.: 100 Isi dengan Judul Halaman Terkait Adaptif Quiz: summation two matrix Quiz: C= A = 3 -8 0 4 7 2 -1 8 4 0 0 0 0 0 0 1.C + D =… 2.C + E = … 3.A + B = … Hal.: 101 D = B = 3 7 2 5 2 6 -1 8 4 0 0 0 0 0 0 E = Feedback: C +D = Isi dengan Judul Halaman Terkait 2 7 2 5 2 6 6 -1 2 9 9 8 -2 16 8 Adaptif Results scalar time with the matrix example: A= 5 6 1 7 2 3 5A = 5x5 5x6 5x1 5x7 5x2 5x3 = 25 30 5 35 10 15 What is the relationship between H with A? H= 250 300 50 350 100 150 H = 50A given matrix A = [aij] and scalar c, multiplication scalar cA have entries as follows : (cA)ij = c.(A)ij = caij Note: On the set of Mmxn, matrix multiplication with skalar are closed (the matrix with the same ordo) Hal.: 102 Isi dengan Judul Halaman Terkait Adaptif Results scalar time with the matrix (next) K 3x3 K= 4K = 5K = Hal.: 103 1 3 5 4 -9 7 0 9 -13 4 16 -36 12 28 0 20 36 -52 5 20 -45 15 35 0 25 45 -65 Isi dengan Judul Halaman Terkait Adaptif Exercise: Results skalar times with the matrix given that cA is the matrix zero. What is your conclusion about the A and c? A = example: c=7 cA = c=0 0*2 0*7 0*2 A = 0 0 0 0 0 0 2 7 2 5 2 6 0*5 0*2 0*6 conclusion cA = 7*0 7*0 7*0 = 7*0 7*0 7*0 0 0 0 0 0 0 case 1: c = 0 and A random matrix. case 2: A zero matrix and c how can it. Hal.: 104 Isi dengan Judul Halaman Terkait Adaptif Multiplication matrix A= 2 3 4 5 8 -7 9 -4 1 -5 7 -8 2.1 +3.7+4.4+5.11 AB = Hal.: 105 1 B= 7 -6 4 -9 11 3 -35 -49 -35 -94 -55 2 94 -35 = Isi dengan Judul Halaman Terkait -49 -35 -94 -55 Adaptif Multiplication matrix (next) Definition: If A = [aij] sized m x r , and B = [bij] sized r x n, then matrix result multiply A and B, is C = AB have elemenelements which is defined as follows : r (C)ij = (AB)ij = ∑ aikbkj = ai1b1j +ai2b2j+………airbrj k=1 • condition: A= Hal.: 106 A mxr B rxn 2 3 4 5 8 -7 9 -4 1 -5 7 -8 AB mxn B= 1 2 7 -6 4 -9 Isi dengan Judul Halaman Terkait Find the value AB and BA Adaptif Multiplication matrix (next) A= 2 3 4 5 8 -7 9 -4 1 -5 7 -8 2.1 +3.7+4.4+5.11 A B = B= 1 2 7 -6 4 -9 11 3 -35 -49 -35 -94 -55 94 -35 = -49 -35 -94 -55 BA not defined Hal.: 107 Isi dengan Judul Halaman Terkait Adaptif Multiplication matrix (next) 1. Given A and B, defined AB and BA. What your conclusion? A B B A mxn nxk nxk mxn m=k ABmxm AB and BA square matrix ABnxn 2. AB = O zero matrix, if one of A or B certainly zero matrix? A= 2 2 3 3 B= 3 -3 -2 2 AB = 0 0 0 0 AB zero matrix, not A or B matrix is zero Hal.: 108 Isi dengan Judul Halaman Terkait Adaptif Exercise: Multiplication matrix (next) Find the value if the time defined 2 4 2 A= • • • • • Hal.: 109 3 7 3 4 9 5 AB = ?? AC = ?? BD = ?? CD = ?? DB = ?? 5 0 6 B= D= 1 -9 8 5 2 0 0 6 1 2 0 C= 7 -11 4 3 5 -6 8 9 5 6 5 6 -9 0 -4 7 8 9 Isi dengan Judul Halaman Terkait Adaptif The root of matrix example: A= 2 1 3 2 A2 = 2 1 3 2 2 1 3 2 2 1 3 2 2 1 3 2 A3 = A x A2 = 2 1 3 2 A0 = I An = A A A …A n factor An+m = An Am Hal.: 110 Isi dengan Judul Halaman Terkait Adaptif Presented with the SPL of the matrix SPL in the form of: a11x1 + a12x2 + a13x3 +….. ..a1nxn = b1 a21x1 + a22x2 + a23x3 +…….a2nxn = b2 : am1x1 + am2x2 + am3x3 + ……amnxn = bm can be presented in the form of a matrix equation : a11 a12……...a1n a21 a22 ……..a2n : : : am1 am2…… amn x1 x2 : xn = x b1 b2 : bn b A: matrix coefficients Ax = b Hal.: 111 Isi dengan Judul Halaman Terkait Adaptif example: Presented with the SPL of the matrix SPL x1 + 2x2 + x3 = 6 -x2 + x3 = 1 4x1 + 2x2 + x3 = 4 1.x1 +2.x2 + 1.x3 0.x1 + -1.x2 + 1.x3 4.x1 +2.x2 + 1.x3 Hal.: 112 6 = 1 4 = 1 2 1 x1 0 -1 1 x2 4 2 1 x3 Isi dengan Judul Halaman Terkait 6 = 1 4 Adaptif multiplication matrix and identity matrix A= A.I = I.A = Hal.: 113 1 2 3 7 5 6 -9 3 -7 1 2 3 1 0 0 7 5 6 0 1 0 -9 3 -7 0 0 1 0 0 1 0 1 0 0 0 1 1 2 3 7 5 6 1 -9 3 -7 2 3 1 2 3 7 5 6 7 5 6 -9 3 -7 -9 3 -7 = = Isi dengan Judul Halaman Terkait Adaptif multiplication matrix and identity matrix AB = A and BA = A, what your conclusion? 1 3 5 4 -9 7 0 9 -13 1 0 0 0 1 0 1 0 0 0 1 0 1 3 5 4 -9 7 0 9 -13 A 0 0 1 I = 0 0 1 I = = A 1 3 5 4 -9 7 0 9 -13 1 3 5 4 -9 7 0 9 -13 = A AB = A and BA = A, then B = I (I identity matrix) Hal.: 114 Isi dengan Judul Halaman Terkait Adaptif Inverse matriks B is inverse from matriks A, if AB = BA = I identity matrix, wrote B = A-1 A-1 A A-1 = A I = Example 4 2 2 ½ -½ 2 -½ = 1 2 -½ 2 2 1 A-1 4 2 1 ½ -½ 1 2 2 1 -½ -½ 1 3 3 1 0 3 -2 Hal.: 115 4 A-1 A B ½ -½ B-1 = = A 2 1 ½ -½ 1 2 2 1 -½ -½ 1 3 3 1 0 3 -2 Isi dengan Judul Halaman Terkait 0 0 1 I 4 B-1 1 B = 1 0 0 0 1 0 0 0 1 I Adaptif Inverse matriks 2x2 4 2 ½ -½ 2 2 -½ = 1 1 0 0 1 I A-1 A a b c d 1 0 0 1 A-1 = A-1 d ab-cd = -c ab-cd = a ab-cd -b ab-cd 1 d -b ad - bc -c a If ad –bc = 0 then A haven’t inverse. Hal.: 116 Isi dengan Judul Halaman Terkait Adaptif example: Inverse matrix 2x2 A= A-1 Hal.: 117 3 2 4 1 1 3.1-4.2 = -4 3.1-4.2 15 = I 4 3 3.1-4.2 5 -2 3.1-4.2 53 2 5 Isi dengan Judul Halaman Terkait Adaptif Quiz: inverse matriks 1. When matrix a c b does not have any inverse? d ad-bc = 0 2. Find the value inverse matriks in the below a. b. c. d. Hal.: 118 5 1 1 2 0 1 0 2 0 0 4 1 1 0 0 1 a. 2/3 -1/5 -1/5 5/3 b. haven’t inverse c. haven’t inverse d. 1 0 0 1 Isi dengan Judul Halaman Terkait Adaptif Quiz: Please fill in the dots below 1.A symmetry then A + AT= …….. 2.((AT)T)T = ……. 3.(ABC)T = ……. 4.((k+a)A)T = …..... 5.(A + B + C)T = ………. Key: 1. 2A 2. AT 3. CTBTAT 4. (k+a)AT 5. AT + BT + CT Hal.: 119 Isi dengan Judul Halaman Terkait Adaptif Properties Inverse Matrix 1.Inverse from matrix if there is one: Jika B = A-1 dan C = A-1, maka B = C 2. (A-1)-1 A= =A 4 2 2 2 ½ -½ A-1 = -½ (A-1)-1 1 ½ -½ -½ ? 1 = 1 0 0 1 A-1 4 2 2A 2 Hal.: 120 Isi dengan Judul Halaman Terkait Adaptif Properties (next) 3. If A have inverse then An have inverse and (An)-1 = (A-1)n, n = 0, 1, 2, 3,… A= A3 = (A3)-1 = ½ -½ 4 2 2 2 4 2 4 2 4 2 2 2 2 2 2 2 A-1 = -½ 0.625 -1 1 = 104 64 64 40 -1 1.625 same (A-1)3 = Hal.: 121 ½ -½ ½ -½ ½ -½ -½ -½ -½ 1 1 1 Isi dengan Judul Halaman Terkait = 0.625 -1 -1 1.625 Adaptif Properties (next) 4.If k scalar not zero, then (kA)-1 = 1/k A-1 4 (5A) = 5 2 2 = 2 20 10 10 10 0.1 (5 A)-1 = -0.1 -0.1 0.2 same ½ -½ 1/5 (A)-1 = 1/5 Hal.: 122 -½ 1 0.1 = -0.1 -0.1 0.2 Isi dengan Judul Halaman Terkait Adaptif Properties (next) 5.(AB)-1 = B-1 A-1 A= 4 2 2 2 (AB)-1 = B-1 A-1 = B= 16 24 10 14 ½ 2 2 -1 ½ -½ 1 B-1 = ½ 5/4 ½ -¾ -0.875 1.5 0.625 -1 = -¾ -½ Hal.: 123 5 5/4 ½ A-1 B-1 = 3 ½ -½ -½ 1 ½ 5/4 ½ -¾ = = Isi dengan Judul Halaman Terkait -0.875 1.5 0.625 -1 -0.5 1 0.75 -1.375 Adaptif Complete equation Linear System With Two Variables and Determinan Matrix Method General form General form from linear equation system with two variables a1 x b1 y c1 a2 x b2 y c2 Hal.: 125 Isi dengan Judul Halaman Terkait Adaptif Method of solution of SPL There is method in solving linear equation system with two variables? Hal.: 126 Isi dengan Judul Halaman Terkait Adaptif Method of solution of SPL Methods in solving linear equation system with two variables : Graphic Method Substitution Method Elimination Method Combined methods (the Elimination and Substitution) Determinan Matrix Method Hal.: 127 Isi dengan Judul Halaman Terkait Adaptif Rules Cramer Linear equation system a1 x b1 y c1 a2 x b2 y c2 With the elimination method can be obtained from the value of X: a1 x b1 y c1 b2 a1b2 x b1b2 y c1b2 a2 x b2 y c2 b1 a2b1 x b1b2 y c2b1 a1b2 a2b1 x c1b2 c2b1 c1b2 c2b1 x a1b2 a2b1 Hal.: 128 Isi dengan Judul Halaman Terkait c1 b1 c2 b2 X a1 b1 a2 b2 Adaptif Rules Cramer Linear equation system a1 x b1 y c1 a2 x b2 y c2 With the elimination method can be obtained from the value of Y: a2 x b2 y c2 a1 a1a2 x a1b2 y a1c2 a1 x b1 y c1 a2 a1a2 x a2b1 y a2 c1 a1b2 a2b1 y a1c2 a2c1 a1c2 a2 c1 y a1b2 a2b1 Hal.: 129 a1 c1 a 2 c2 Y a1 b1 Isi dengan Judul Halaman Terkait a2 b2 Adaptif Method Matrix determinant Linear equation system a1 x b1 y c1 a2 x b2 y c2 Determinant D from coefficient matrix of linear equation system is : D Hal.: 130 a1 b1 a2 b2 a1b2 a2b1 Isi dengan Judul Halaman Terkait Adaptif Method Matrix determinant Explore the value X that meet the equality : c1 b1 c2 b2 DX c1b2 c2b1 X a1 b1 D a1b2 a2b1 a2 b2 Hal.: 131 Isi dengan Judul Halaman Terkait Adaptif Method Matrix determinant Explore the value Y that meet the equality : a1 c1 DY a2 c2 a1c2 a2 c1 Y a1 b1 D a1b2 a2b1 a2 b2 Hal.: 132 Isi dengan Judul Halaman Terkait Adaptif The value from X and Y exist, if: a b 0 p q D≠0 or or aq bp 0 or Hal.: 133 aq bp Isi dengan Judul Halaman Terkait Adaptif example Define the set of the settlement system of equality: 2 x 5 y 14 5 x 2 y 7 Hal.: 134 Isi dengan Judul Halaman Terkait Adaptif Solution from linear equation system 2 x 5 y 14 5 x 2 y 7 Determinant D D a1 b1 a2 b2 2 5 5 2 2 2 5 5 4 25 21 Hal.: 135 Isi dengan Judul Halaman Terkait Adaptif The value X that meet the : c1 b1 DX c2 b2 X a1 b1 D a2 b2 14 7 2 5 5 2 14 2 7 5 21 5 2 28 35 21 63 21 3 Hal.: 136 Isi dengan Judul Halaman Terkait Adaptif The value Y that meet the : a1 c1 a 2 c2 DY Y a1 b1 D a2 b2 2 14 5 7 2 7 5 14 21 2 5 5 2 14 70 21 84 21 4 Hal.: 137 Isi dengan Judul Halaman Terkait Adaptif HP So the collective system of settlement is {(3,-4)} Hal.: 138 Isi dengan Judul Halaman Terkait Adaptif Exercise Define the set of the settlement system of the following equation: 3x y 9 1. 2 x 5 y 11 2 x y 5 2. 3x 2 y 11 Hal.: 139 Isi dengan Judul Halaman Terkait Adaptif Homework 2 x 5 y 16 1. 3x 7 y 24 x 3 y 2 2. 3x 9 y 6 1 3 x y 1 4 3 5. 1 x 2 y 0 2 3 3x 7 y 9 3. 6 x 14 y 9 1 1 x y5 3 2 4. x 2 y 1 3 Hal.: 140 Isi dengan Judul Halaman Terkait Adaptif Competency standards : Solve problems related to the system of linear and inequality and quadratic. Hal.: 142 Isi dengan Judul Halaman Terkait Adaptif Learning materials : Equation and inequality linear. Quadratic equation and inequality. Roots of the quadratic equation and properties. Establishing new quardtic equality. Implementation of quadratic equality and inequality in problem solving Skills Program . Hal.: 143 Isi dengan Judul Halaman Terkait Adaptif Basic kompetence 1 : Determine the collective settlement of linear equality and inequality. Hal.: 144 Isi dengan Judul Halaman Terkait Adaptif Learning objectives 1. Explain the linear equation and inequality. 2. Complete equality and inequality one linear variable. 3. Complete linear equation system of two variables. 4. Problem solving skills program using the linear equation and inequality . Hal.: 145 Isi dengan Judul Halaman Terkait Adaptif Linear equation example Finished equation below : 1. 3x -5 = 4 2. 3(3x + 6) = 5x + 2 3. ½ x + 2/3 = 3/4 Hal.: 146 Isi dengan Judul Halaman Terkait Adaptif Answer no 1 and 2 1. 3x – 5 = 4 3x =4+5 3x =9 x =3 2. 3(3x + 6) = 5x + 2 9x + 18 = 5x + 2 9x – 5x = 2 – 18 4x = -16 x = -4 Hal.: 147 Isi dengan Judul Halaman Terkait Adaptif Answer no 3 ½ x + 2/3 = ¾ x 12 6x+8 =9 6x = 9 – 8 6x = 1 x = 1/6 Hal.: 148 Isi dengan Judul Halaman Terkait Adaptif Linear inequality example Finished inequality below : 1. 3x -5 > 4 2. 3(3x + 6) < 5x + 2 3. ½ x + 2/3 ≥ 3/4 Hal.: 149 Isi dengan Judul Halaman Terkait Adaptif Answer no 1 and 2 1. 3x – 5 > 4 3x >4+5 3x >9 x >3 2. 3(3x + 6) < 5x + 2 9x + 18 < 5x + 2 9x – 5x < 2 – 18 4x < -16 x < -4 Hal.: 150 Isi dengan Judul Halaman Terkait Adaptif Answer no 3 ½ x + 2/3 ≥ ¾ 6x+8 6x 6x x Hal.: 151 x 12 ≥9 ≥9–8 ≥1 ≥ 1/6 Isi dengan Judul Halaman Terkait Adaptif Two varibels SPL example Find the value x and y satisfy the following linear equation system with a mixture of methods (elimination and substitution): 2x + 3y = 18 5x - y = 11 Hal.: 152 Isi dengan Judul Halaman Terkait Adaptif Answer : 2x + 3y = 18 |x 1| 2x + 3y = 18 5x - y = 11 |x 3|15x – 3y = 33 + 17x = 51 x =3 2x + 3y = 18 2.3 + 3y = 18 6 + 3y = 18 3y = 18 – 6 3y = 12 y=4 Hal.: 153 Isi dengan Judul Halaman Terkait Adaptif Exercise 1.finished equation and inequality below : a. 2x – 6 = 8 b. 3x + 4 = x – 8 c. 5(2x + 3) = 7x – 3 d. ½ x – 2/3 = 5/6 e. 5x + 6 > 11 f. 6x – 8 ≤ 2x + 4 g. 2( 3x – 4) ≥ 9x + 7 Hal.: 154 Isi dengan Judul Halaman Terkait Adaptif Exercise (next) 2. find the value x and y from equation system below : a. 3x + 4y = 13 dan 5x – 3y = 12. b. 4x – 2y = 0 dan 6x + 7y = 20. Hal.: 155 Isi dengan Judul Halaman Terkait Adaptif Quadratic equation and inequality 1. Quadratic equation definition 2. Find the root quadratic equation 3. Kind of quadratic equation root 4. Formula sum & multiply quadratic equation root Hal.: 157 5. Quadratic inequality Isi dengan Judul Halaman Terkait Adaptif Basic kompetence 2 : Determine the settlement of the collective quadratic equation and inequality. Hal.: 158 Isi dengan Judul Halaman Terkait Adaptif Learning objectives 1. Explain the quadratic equation and inequality. 2. Explain the root and properties quadratic equation. 3. Complete quadratic equality and inequality. Hal.: 159 Isi dengan Judul Halaman Terkait Adaptif Quadratic equation : `an equation where the highest rank of variables, namely two` General form of quadratic equation : ax bx c 0 2 Hal.: 160 with a 0, a, b, c R Isi dengan Judul Halaman Terkait Adaptif Quadratic equation example a = 2, b = 4, c = -1 2x 2 4x 1 0 a = 1, b = 3, c = 0 x 2 3x 0 a = 1, b = 0, c = -9 x2 9 0 Determine the settlement of quadratic equation in x means that the search for value so that if the value of x in the equation is disubsitusikan, then the equation will be valued properly. Settlement of square root is also called square-root of the equation. Hal.: 161 Isi dengan Judul Halaman Terkait Adaptif There are three ways to determine the square root of the equation, namely : Factorization Complete perfect square Quadratic formula (formula a b c) Hal.: 162 Isi dengan Judul Halaman Terkait Adaptif Factorization To complete the equation ax² + bx + c = 0 with factorization, First time find two numbers that meet the following requirements as . •Time results is same ac • sum is same b Suppose the two numbers that are eligible x1 and x 2 , and x1 x2 a c then x1 x2 b Basic principles that are used to complete the quadratic equation Factorization is the nature of multiplication, namely : If ab = 0, then a = 0 or b = 0 . So, will change if the formula or standard form of equation square ax² + bx + c = 0 . • for a = 1 factorization form ax² + bx + c = 0 to be : ( x x1 )( x x2 ) 0 or ( x x2 ) 0 • for a ≠ 1 factorization form ax² + bx + c = 0 to be : ( ax x1 )( ax x2 ) 0 ( ax x1 ) 0 or ( ax x2 0) a Hal.: 163 Isi dengan Judul Halaman Terkait Adaptif example : Complete the following quadratic equation with factorization : 1. x2 + 7x + 12 =0 2. x2 - 4x – 21 = 0 3. 6x2 -7x – 20 = 0 Hal.: 164 Isi dengan Judul Halaman Terkait Adaptif answer no 1 and 2 . 1. X2 + 7x + 12 = 0 (x + 3)(x + 4) = 0 X1 = -3, x2 = -4 2. x2 – 4x – 21 = 0 (x + 3)(x – 7) = 0 x1 = -3, x2 = 7 Hal.: 165 Isi dengan Judul Halaman Terkait Adaptif answer no 3 . 3. 6x2 – 7x -20 = 0 (6x – 15)(6x + 8) = 0 6 (6x – 15)(6x + 8) = 0 3 . 2 (2x – 5)(3x + 4) = 0 x1 = 5, x2 = -4 Hal.: 166 Isi dengan Judul Halaman Terkait Adaptif complete perfect square Quadratic equation ax² + bx + c = 0, change to be general form perfect quadratic with below : a. Ensure the coefficient of x² is 1, if not value 1 divide the number of such coefficients to the value 1. b. Add segment with the left and right half Coefficient of x and make to square . c. Make a left segment of perfect square, While the right segment simplified . Hal.: 167 Isi dengan Judul Halaman Terkait Adaptif Example : Complete the following quadratic equation with complete square (perfect square) : 2x2 - 8 x - 42 = 0 Hal.: 168 Isi dengan Judul Halaman Terkait Adaptif answer : 2x2 -8x -42 = 0 :2 X2 – 4x – 21 = 0 X2 – 4x = 0 + 21 X2 – 4x = 21 X2 – 4x + 22 = 21 + 22 ( x – 2 )2 = 25 X–2 = +/- 5 X1 = 5 + 2 = 7 X2 = -5 + 2 = -3 Hal.: 169 Isi dengan Judul Halaman Terkait Adaptif quadratic formula (formula a b c) By using the rules complete perfect square which has been published previously, you can search in the formula for complete quadratic equation . if x1 and x 2 namely root quadratic equation ax² + bx + c = 0, then : b b 2 4ac x1 2a Hal.: 170 and b b 2 4ac x2 2a Isi dengan Judul Halaman Terkait Adaptif Exercise Complete the following quadratic equation with factorization, perfect square and with formulas : 1. x2 + 5x + 4 = 0 2. x2 + 6x = 40 3. 6x2 – 11x – 10 = 0 Hal.: 171 Isi dengan Judul Halaman Terkait Adaptif value from b² - 4ac namely diskriminant, that is D = b² - 4ac . Some kind of square root of the equation based on the value of D . a. If D > 0, then quadratic equation has two real roots Different. b. If D = 0, then quadratic equation has two real roots the same or have the root is often called the twin (same) . c. If D < 0, then square root of the equation that does not have any Real (imaginary) . Hal.: 172 Isi dengan Judul Halaman Terkait Adaptif Roots of quadratic equations : or b b 4ac x1 2a 2 b b 2 4ac x2 2a If the note is the root of the second, then obtained: b x1 x 2 a If both roots are multiplied, then obtained : x1 x 2 c a Both of the above mentioned formula of the sum and the product of roots of quadratic equations. Hal.: 173 Isi dengan Judul Halaman Terkait Adaptif 1. The sum of roots of quadratic equations: x1 + x2 Hal.: 174 b b 2 4ac 2a = b b 2 4ac 2a = b b 2 4ac b b 2 4ac 2a = 2b 2a = + b a Isi dengan Judul Halaman Terkait Adaptif 2. The product of roots of quadratic equations x1 . x2 = b b 2 4ac 2a b 2 = b 2 2a 2 4ac b 2 b 2 4ac = 4a 2 . b b 2 4ac 2a 2 b 2 b 2 4ac = 4a 2 4ac = 4a 2 c = a Hal.: 175 Isi dengan Judul Halaman Terkait Adaptif The sum and the product of roots of root quadratic equations If x1 and x2 of the both are roots of quadratic equations ax2 + bx +c = 0 (a 0), the sum and the product of roots of quadratic equations determined with the formula b x1 + x2 = a = x1 . x2 c a Formula the sum and the product of roots can using for distinguish the characteristics of the root-root of the quadratic equation has two different real roots. Such as the following: Hal.: 176 Isi dengan Judul Halaman Terkait Adaptif The sum and the product of roots of quadratic equations: 1. One is the root of the root of the opponent or the other are often perceived to be radical opposite : x1 = - x2 x1 + x2 = 0 b = 0 a b = 0 2. One is the root of the inverse root of the other or are often perceived to be radical the reverse : 1 X2 x1 = x1 . x2 = 1 Hal.: 177 c =1 a a =c Isi dengan Judul Halaman Terkait Adaptif The sum and the product of roots of quadratic equations: 3. One root same with 0: x1 = 0 c x1 . x 2 = a c (0) x2 = a c 0 = a c = 0 Hal.: 178 b x1 + x 2 = a b (0) + x2 = a x2 = Isi dengan Judul Halaman Terkait b a Adaptif The sum and the product of roots of quadratic equations: 4. The second root has the same sign or are often perceived to be radical with the same : x1 0 and x2 0 or x1 0 and x2 0 x1 . x2 0 c a > 0, a and c marked the same 5. Both root does not have any signs that are often perceived to be the same or roots of the different signs : x1 0 and x2 0 or x1 0 and x2 0 x1 . x2 0 Hal.: 179 c 0, a and c marked the same a Isi dengan Judul Halaman Terkait Adaptif quadratic inequality is inequality that have a variable with the highest rank of the two . a. b. c. d. Steps to seek settlement of the collective quadratic inequality : Indicate quadratic inequality in the form of quadratic equation (made with the right segment 0) . Find the square root of the equation. Create a line number which is the roots, set the sign (positive or negative) on each interval . Set of intervals obtained from the settlement that meets these inequality. Hal.: 180 Isi dengan Judul Halaman Terkait Adaptif Exercise Finished : 1. x2 + 5x + 4 > 0 2. x2 + 6x ≤ 40 3. 6x2 – 11x – 10 ≥ 0 Hal.: 181 Isi dengan Judul Halaman Terkait Adaptif Basic competence 3 : Applying quadratic equation and inequality Hal.: 182 Isi dengan Judul Halaman Terkait Adaptif Learning objectives 1. Establishing quadratic equality based on roots is known. 2. Establishing quadratic equality based on roots of the quadratic equation others. 3. Problem solving skills program based on the quadratic equation and inequality. Hal.: 183 Isi dengan Judul Halaman Terkait Adaptif Apersepsi: general form quadratic equation, namely: ax2 + bx +c = 0 to determine formula of the sum and the product of roots of quadratic equations, we remember that roots from equation ax2 + bx +c = 0 (a 0) can determine with formula x1,2 = b b 2 4ac 2a b b 2 4ac x1 = 2a 2 b b 4ac x2 = 2a Hal.: 184 Isi dengan Judul Halaman Terkait Adaptif Problem 1 Find the roots of : x2 - 5x + 6 = 0 Horeeee I can………..! Hal.: 185 Isi dengan Judul Halaman Terkait Adaptif Problem 2 Find the quadratic equation, if roots is x1 = 2 and x2 = 3 ????? Emmm what equation??? Hal.: 186 Isi dengan Judul Halaman Terkait Adaptif Problem solving Find the roots of x2-5x+6=0 Answer : x2-5x+6=0 (x-2)(x-3)=0 x-2=0 or x-3=0 x=2 x=3 Hp {2,3} Hal.: 187 Find the quadratic equation, if roots is x1=2 & x2=3 then: x=2 x=3 x-2=0 or x-3=0 (x-2)(x-3)=0 x2-2x-3x+6=0 x2-5x+6=0 Isi dengan Judul Halaman Terkait Adaptif Note Find the roots of x2-3x+2=0 answer: x2-3x+2=0 (x-1)(x-2)=0 x-1=0 or x-2=0 x=1 x=2 Hp {1,2} Hal.: 188 Find the quadratic equation, if roots is x1=1 & x2=2 then: x=1 x=2 x-1=0 or x-2=0 (x-1)(x-2)=0 x2-2x-x+2=0 x2-3x+2=0 Isi dengan Judul Halaman Terkait Adaptif Note Find the roots of x2-2x-3=0 Answer : x2-2x-3=0 (x-3)(x+1)=0 x-3=0 or x+1=0 x=3 x=-1 Hp {-1,3} Hal.: 189 Find the quadratic equation, if roots is x1=-1 & x2=3 then: x=-1 x=3 x-(-1)=0 or x-3=0 (x+1)(x-3)=0 x2+x-3x-3=0 x2-2x-3=0 Isi dengan Judul Halaman Terkait Adaptif What you get…? If quadratic equation have roots of x1=a dan x2=b then quadratic equation is : x=a x=b x-a=0 or x-b=0 (x-a)(x-b)=0 x2-ax-bx+ab=0 x2-(a+b)x+ab=0 Hal.: 190 Isi dengan Judul Halaman Terkait Adaptif Conclusion To arrange a quadratic equation has been known radical with x1=a or x2=b then equality is: (x-a)(x-b)=0 or x2-(a+b)x+a.b=0 Hal.: 191 Isi dengan Judul Halaman Terkait Adaptif Note If x1 and x2 is roots of quadratic equation ax2 + bx +c = 0 (a 0), the sum and the product of roots of quadratic equations is : x1 + x2 = b a c x1 . x2 = a Hal.: 192 Isi dengan Judul Halaman Terkait Adaptif If x1 and x2 roots of quadratic equation ax2 + bx + c = 0 (a ≠ 0). 1. The opposite of roots (x1 = - x2 ) b = 0. 1 ) a = c. x2 2. The reversal of roots ( x1 = 3. A root equal to zero ( x1 = 0) c = 0 and x2 = 4. 5. A both of roots the same sign c a A both of roots the different sign Hal.: 193 b a > 0. c a Isi dengan Judul Halaman Terkait < 0. Adaptif Note Complete quadratic equations Quadratic equation Roots ax2 + bx + c = 0 x1, x2 Prepare quadratic equations Hal.: 194 Isi dengan Judul Halaman Terkait Adaptif Composing quadratic equations if the roots are given a. Product of factor (x- x1) (x – x2) = 0 b. Using the sum and the product of roots x2 – (x1 + x2) x + (x1 . x2) = 0 Hal.: 195 Isi dengan Judul Halaman Terkait Adaptif Example 1: Roots of quadratic equations 3x2 + 6x – 8 = 0 are p and q. Compose of quadratic equations if roots are 1 1 and . p q Answer : remember!! Formula the sum and the product of roots: x2 – (x1 + x2)x + x1 . x2 = 0 Given quadratic equation 3x2 + 6x – 8 = 0 Of roots of p and q, then: pq Hal.: 196 6 2 3 and p.q 8 8 3 3 Isi dengan Judul Halaman Terkait Adaptif Advanced answer instance: Quadratic equations have requested of roots of x1 and x2, 1 1 and x2 then x1 p 1 1 p q pq x1 x 2 p.q 2 x1 x 2 8 3 3 x1 x 2 4 x1 x 2 Hal.: 197 q 1 1 . p q 1 x1 .x 2 p.q 1 x1 .x 2 8 3 3 x1 .x 2 8 x1 .x 2 Isi dengan Judul Halaman Terkait Adaptif Advanced answer Substitute x1 x 2 3 3 and x1 .x 2 8 4 to equation x2 – (x1 + x2)x + x1 . x2 = 0 to get: x2 3 3 x 0, 4 8 both segment to multiply 8 8x 2 6 x 3 0 So, quadratic equation is 8x2 – 6x – 3 = 0 Hal.: 198 Isi dengan Judul Halaman Terkait Adaptif example 2: The qudratic equation 3x2 + x – 2 = 0, prepare quadratic equation if roots is a square from roots of equation to determine! Answer : remember!! Formula the sum and the product of roots: x2 – (x1 + x2)x + x1 . x2 = 0 Given quadratic equation 3x2 + x – 2 = 0, then: 1 pq 3 Hal.: 199 and 2 2 p.q 3 3 Isi dengan Judul Halaman Terkait Adaptif Advanced answer instance: asked the equality y2 – (y1 + y2)y + y1 . y2 = 0 with roots y1 and y2 b 2 2 then, x1 x 2 a b 2 2 y1 y 2 x1 x 2 a c 2 2 y1 . y 2 x1 .x 2 a Hal.: 200 x1 2 x1 x 2 x 2 2 x1 x 2 2 2 x1 x 2 2 x1 .x 2 2 2 1 2 2 3 3 1 4 9 3 13 9 Isi dengan Judul Halaman Terkait c 2 2 x1 .x 2 a x1 .x 2 2 3 4 9 2 2 Adaptif Advanced answer b 2 2 x1 x 2 a x1 2 x1 x 2 x 2 2 x1 x 2 2 2 x1 x 2 2 x1 .x 2 2 2 1 2 2 3 3 1 4 9 3 13 9 c 2 2 x1 .x 2 a x1 .x 2 2 3 4 9 2 2 Substitution: b 13 a 9 c 4 a 9 and to equation y2 – (y1 + y2)y + y1 . y2 = 0 to get: y2 13 4 y 0, 9 9 both segment to multiply 9 9 y 2 13 y 4 0 So, quadratic equation is 9y2 – 13y + 4 = 0 Hal.: 201 Isi dengan Judul Halaman Terkait Adaptif Example 3 Given α and β is the roots of equation 4x2 – 3x – 2 = 0. find the quadratic equation if the roots of (α + 3) and (β + 3)! answer: Given quadratic equation 4x2 – 3x – 2 = 0 of the roots of α and β, then: α+β= b = 3 and α . β = c = 2 a 4 a 4 Instance quadratic equation namely, x2 – (x1 + x2)x + x1.x2 = 0 have the roots of x1 and x2, then x1 = (α + 3) and x2 = (β + 3), then we get: x1 + x2 = (α + 3) + (β + 3) = (α + β) + 6 = 3 + 6 = 27 4 4 Hal.: 202 Isi dengan Judul Halaman Terkait Adaptif Advanced answer x1 . x2 = (α + 3) . (β + 3) = (α . β) + 3(α + β) + 9 2 3 = 4 + 3( 4 ) + 9 2 4 43 = 4 = + 9 36 + 4 4 27 Substitution x1 + x2 = 4 and x1 . x2 43 = to 4 equation x2 – (x1 + x2)x + x1.x2 = 0, and get x2 – 43 27 x + = 0, both segment to multiply 4 4 4 4x2 – 27x + 43 = 0 So, equality that is required 4x2 – 27x + 43 = 0. Hal.: 203 Isi dengan Judul Halaman Terkait Adaptif Exercise 1. Set equality x2 + bx + c = 0, a ≠ 0. composing new quadratic equation the roots of: a. opposite with the roots of given b. reversal with the roots of given c. larger n times from the roots of given d. m more than from the roots of given e. constitutes exponent 3 from the roots of given. 2. Set equality x2 – 3x + 1 = 0. Composing new quadratic equation the roots of: a. opposite with the roots of given b. reversal with the roots of given c. larger 3 times from the roots of given d. 3 more than from the roots of given e. constitutes exponent 3 from the roots of given. Hal.: 204 Isi dengan Judul Halaman Terkait Adaptif Hal.: 205 Isi dengan Judul Halaman Terkait Adaptif Ways to solve quadratic equations are : Factoring Completing the square Formula Hal.: 206 Isi dengan Judul Halaman Terkait Adaptif Story problem related to the quadratic equation Budi will answer the question from their teacher about election with both the number the following : difference both the number is two and the product both the number is 168. how the number is ? Hal.: 207 Isi dengan Judul Halaman Terkait Adaptif Matter how complete the story Reading problems Translate in mathematical model Finishing Check to result Hal.: 208 Isi dengan Judul Halaman Terkait Adaptif Finishing Budi will answer the question from their teacher about election with both the number the following : Difference both the number is two and the product both the number is 168. how the number is ? Hal.: 209 Given : ∙ Election both the number ∙ Difference is 2 ∙ The product is 168 Asked : how the number is ? Isi dengan Judul Halaman Terkait Adaptif next Budi will answer the question from their teacher about election with both the number the following : Difference both the number is two and the product both the number is 168. How the number is ? Hal.: 210 answer : Instance number is a and b a – b = 2 ………………1) a . b =168 ………………2) from equation 2) a . b =168 => a = 168 / b substitution to equation 1) a-b = 2 (168 / b) – b = 2 b2 + 2b – 168 = 0 (b - 12)(b + 14) = 0 Isi dengan Judul Halaman Terkait Adaptif Next For b – 12 =0 b = 12 For b +14 = 0 b = - 14 Remember number always positive then value b to use is 12 a–b=2 a – 12 = 2 a = 14 check ∙a–b=2 14 – 12 = 2 ∙ a . b = 168 14 . 12 = 168 So, number is 12 and 14 Hal.: 211 Isi dengan Judul Halaman Terkait Adaptif