Download Antibiotik_01_english

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Microbes Produce Antibiotics
Antibiotics  secondary metabolites
 inhibit growth at low concentration
Alexander Fleming (1929)
 Penicillium notatum 
inhibit staphlococcus
Begining of Antibiotic era
Development : - 1963  513 atb
- 1974  4076 atb
- 1980-an  6000 atb
Antibiotics Production 
Fermentation
Semisynthetic
Microbes producing antibiotics:

Bakteria, Actinomycetes, & Fungi
Fungi :
-Phycomycetes  14 atb
 299 atb
-Ascomycetes
-Aspergillacea  242 atb
 Penicillium  123 atb
 Aspergillus  115 atb
-Basidiomycetes  140 atb
-Fungi inperfecti  315 atb
-Moniliales  269
1
Microbes producing antibiotics:
Bakteria :
-Pseudomodales  87 atb
-Pseudomodaceae  84
 274 atb
-Eubacteriales
-Enterobacterilaceae  36 atb
-Micrococcaceae  16 atb
-Lactobacillaceae  28 atb
-Bacillacea  171 atb
 Bacillus  167 atb
Microbes producing antibiotics:
Bakteria :
-Actinomycetales  2078 atb
-Mycobacteriaceae  4 atb
-Actinoplanaceae  18 atb
-Streptomycetaceae  1950 atb
- Streptomyces  1922 atb
-Micromonosporaceae  41 atb
-Thermoactinomycetaceae  17 atb
-Nocardiaceae  48
2
Classification of Antibiotics:
1. Carbohydrate Atb
- pure sugar  nojimisin
- aminoglucoside  streptomicin
- Ortomisine  Everninomisin
- N-glicoside  sterptotrisin
- C-glucoside  Vancomisin
- glicolipid  Moenomisin
2. Macrocyclic lactone
- macrolide Atb erytromisin
- atb polyene  Candisidin
- ansamisin  Rifamisin
- Mackrotetrolide  tertranamisin
Classification of Antibiotics:
3. quinoneAtb
- tetrasiklin  tertrasiklin
- anthrasiklin  adriamisin
- naftoquinon  actinorhodin
- benzoquinon  mitomisin
4. Peptide & amino acid
- amino acid derivate  cycloserin
- β-laktam  penicillin
- peptide  basitrasin
- chromopeptide  actinomisin
- Chelating peptide  bleomisin
3
Classification of Antibiotics:
5. Heterocyclic + nitrogen
- nukleoside  polymixinine
6. Heterocyclic + oksigen
- polyeter  monensin
7. Alicyclic derivates
- cycloalkana derivate sikloheksimid
- steroid  fusidate acid
8. Aromatic
- benzene derivate  kloramphenikol
- aromatic ether  novobiosin
9. Alifatic Atb
- phosphorous compound  phosphomisine
Antibiotic Application:
Spektrum atb : - broad  active for many organisms
- narrow  active for certain organism
1. Antitumor :  cytostatic agent
2. Plant pathogens:
 the first: - streptomisine  Xanthomonas oryzae
Pseudomonas
3. Food Preservative :  regulation for their use
 piramisin : - food suface
- fungiside
 tylosin : - effective for bacillus spora
Canned food
 nisin : effective for clostridia
4
Antibiotic Application:
4. Animal Feed :  trigger animal growth
Application 
regulation !!! Germ free
5. Study of biochemistry & molekular biology :
 selective inhibitors: - to study cell function
-DNA replication
- transkription
-Translation
-Cell wall synthesis
Economic value of antibiotics:
Production more than100 000 ton per year
1980: selling value + $ 4.2 billion
US + $ 1 billion per year:
 1. Cephalosporine
2. Tetracycline
 For animal feed: + $ 100 million per year
-before 1960 : 5 % new atb isolates were used for terapheutic
-then  many isolates were found
- % Atb marketable
: - 1961-1965 : 2.6 %
- 1966 –1977 : 1 %
High cost of production & clinic assays
5
Hugh number of atb were already found
Why exploration still cunducted ???
Natural Atb are not optimal for terapheutic
 need to develop:
- to increase activity
- to reduce side effects
- to increase spectrum
- to increase selectivity
 Resistant development
Chemical Modification
Genetic Modification
: - mutasynthesis
- DNA rekombinant
- fusi protoplasm
β-Laktam Antibiotics
Penisilin
Cephalosporin
Cephamisin
Peptide Antibiotics
Efective Antibiotics
Penilisine:
-Fleming (1929)  Penicillium notatum
-Isolated in 1940
-Firstly being use in 1941
-Produced by : - Penicillium
- Aspergillus
6
Natural Penisiline:  effective to many Gram positive bacteria
 acid labile
 inactivated by penisiline β-laktamase
Β-laktam ring
inhibit peptidoglikan synthesis
 target: transpeptidase & D-alanine carboksipeptidase
Polimerase peptidoglican inhibited
Inhibit growing cells
Not inhibit not growing cells
Basic structure of penisiline: 
6- aminopenisilic acid (6-APA)
Compose of thiazolidin ring & β-laktam ring
6-APA containing many acyl groups
Fermentation without acyl precursor  produce many natural penisilines
Only benzilpenisiline useful for terapeutics
+ acyl prekursor  produce expected peniiyline
7
Penisiline structure:
Cincin
β-laktam
Residu gugus akil
Cincin
thiazolidin
6-asam aminopenisilat
Commercial production: - natural 
Penisilin G,V, & O
-semisynthetic:  Penisilin G with chemical or enzimatic
Split  6-APA
Derivate contruction 
+ acyl
Penisiline acylase
8
Biosynthesis:
β-laktam-thiazolidine rings ;
 contructed from L-cystein & L-valin
 non ribosomal process : tripeptida 2 aa & L-α-asam aminoadipat
(L-α-AAA)
Product I from cyclication : isopenisilin N
(biochemical reaction has not known yet)
Benzilpenisiline:  alteration of L-α-AAA with
activated penilacetate acid
Biosynthesis of penisiline:
Penicillium chrysogenum
HOOC-CH-CH2-CH2-CH2-COOH
NH2
L-α-Asam Aminoadipat (L-α-AAA)
Cys
L-α-AAA-Cys
Val
L-α-Aminoadippyl-Cysteinil-D-Valine
2 steps cyclication
H
L-α-AAA– N
S
N
COOH
O
L-α-AAA-CoA-SH
H
-CH2-CO– N
Isopenilisin N
fenilasetat
S
N
COOH
Penisilin transakilase
O
Benzil-penisilin
9
Biosynthesis of penisilin:
affected by [fosfat]
 repressed by glucose
Fermentation use lactose
 slow metabolisms of sugar
Strain development:
Production:  Fleming strain = 2 IU/ml Strain selection
 now = 85 000 IU/ml
& mutagenesis
program
Peningkatan dari 0.0012 g/l  50 g/l
Starting in 1943
Method of production:
Penisiline G & V  produced by submerged fermentation
 capacity 40 000– 200 000 liters
 aerobic O2 supply limitation
10
Growth Curve of penisiline production :
produksi selama 40 jam
Doubling time 6 jam:
-pembentukan biomassa
Dg fed-batch:
- spi 120 – 160 jam
kembali
11
kembali
kembali
12
kembali
kembali
13
kembali
Cephalosporine  β-laktam + dihidrothiazin rings
Cephalosporium acremonium : - isolation of atb in 1953
- strain isolation in 1945
Acremonium chrysogenum  - Cephalosporin
 - Penisilin N
 Cephalosporin steroid P1-P5
Fungi
: - Emericellopsis
- Paecilomyces
Streptomyces : S. lipmanii
S. clavuligerus
S. lactamdurans
14
Characteristics:
- broad spectrum
- low Toxicity
- ~ ampisiline
- resistant to penisiline beta laktamase
- not resistant to cephalosporin beta laktamase
15
Biosynthesis:
Low [lisin]
Production increased
16
Method of Production :  similar with penisiline

Fermentation:
- growth phase 90 hour
-Up to 90 hours, high consumption of O2 need high aeration
-90 – 160 hours  low consumption of O2
-pH 7
-Temp 25 – 28 C
-Medium :
- corn steep liquor
- meat meal
- sucrose, glucose
- ammonium acetate
chemically: - from penisiline
 price of penisiline 
low
New β-laktam:
 derivated from semisintetic
-Nokardisin:
- monosiklik β-laktam
- efektif pd Gram –
- Nocardia uniformis
- Streptomyces alcalophilus
-Klavulanic acid:
- β-laktam-oxazolidin
- not efektive
- inaktivation by β-laktamase ireversibel
- Streptomyces clavuligens
- aplikasi kombinasiaktivitas ningkat
-Thienamisin :
- β-laktam-pyrrolin
- efektive to Gram – & +
- inaktivation by β-laktamase
- Streptomyces cattleya
- not stable  depeloped fro stability
17
Amino acid derivates : - sikloserin
- azoserin
Amino acid & peptide Atb:
β-laktam
Chromopeptide
Depsipeptide
Linier & cylic peptide
D-sikloserin:  D-4-amino-3-isoxazolidone
 natural & synthetic
- S. orchidoceus
- S. lavendulae
- S. garyphalus
- S. roseochromogenes
- Inhibit cell wall synthesis 
inhibit alanine racemase
- enzyme for alanine production
-Efective to mycobacterium  M. tubercolosis
-for TBC; combination with isotinate hidrazine & rifampisin or streptomisin
Aktinomisin: 
atb chromopeptida
-fenoksazon-kromofor
 unit dg pentapeptida-lakton
 as. Amino bervaryasi
-hambat RNA polimerase
-Sangat toksik rusak liver & ginjal
-Utk tumor/kanker
18
Biosintesis:
Atb depsipeptida:
Subunit:  as. Amino
 as. hidroksil
# Valinomisin: - nilai ekonomi rendah
- digunakan pd penelitian biokimia
 hambat fosforilasi oksidatif
 carrier K+
- S. fulvissimus
19
# Virginiamisin:
- efektif Gram +
- pemicu pertumbuhan ternak unggas, babi, sapi
- S. virginiae
Atb peptida linier & siklik:
-MO :  Bacillus  sebagian besar atb peptida
 Streptomyces
-BM : 270 – 4500
-Sebagian besar siklik
- di Bacillus produksi saat sporulasi
 berperan dalam proses sporulasi
-Aplikasi: terbatas  toksik obat luar
- Gramisidin
Luka &
- Tirosidin
luka bakar
- Basitrasin
- polimiksin  infeksi Gram –
- viomisin
TBC
- Capreonisin
20
Basitrasin:
A : BM 200 000
B : BM 210 000
C: BM 380 000
-nilai ekonomi penting
-Produksi th 1976 + 500 ton
-Obat luar dan makanan ternak
-Bacillus lincheniformis
-Aktivitas hambat sintesis dinding sel
 sintesis peptidoglikan
Biosintesis:
 tidak melibatkan ribosom, mRNA, & tRNA
 komplek multienzim dinamakan:
“MESIN THIOTEMPLATE”
ATP & Mg2+
21
“MESIN THIOTEMPLATE”
Metode produksi:
22
Atb Karbohidrat:

Turunan gula & glikosida
Nojirimisin:
 efektif thd Sarcina lutea & Xanthomonas oryzae
 aktif menghambat α & β glukosidase dan amilase
23
Atb Karbohidrat:
Efektif pd Gram –
Utk infeksi akut
Toksik kerusakan ginjal
Efek samping: kurang pendengaran
24
Streptomisin:
Aktivitas : 1. Hambat sintesis protein
 ikat unit 12S dari subunit 30 S
 salah kode & baca
 12 S situs aktif pengikatan aminoakil-tRNA &
tMet-tRNA
2. Rusak membran sel
 hambat translokasi peptidil-tRNA
 kebocoran molekul BM kecil
Biosintesis: 
banyak enzim yg diketahui tapi
belum dimengerti benar
25
Metode produksi:
-fermentasi :
 150 000 l
 suhu 28 – 30 C
 pH 7
 waktu 4 – 7 hari
 sumber C : pati/dekstrin
 sumber N : soy meal
26
Atb makrosiklik lakton:
Efektif pd Gram +
Hambat sintesis protein
 ikat subunit ribosom 50 S
S. erythreus
-Eritromisin
27
28
Metode produksi:
-fermentasi submerged:
 glukosa
 soy meal
 (NH4)2SO4
 NaCl
 CaCO3
 pH
50 g/l
30 g/l
3 g/l
5 g/l
6 g/l
7
Tetrasiklin:
Struktur dasar cincin naftalena
Pengguanaan luas
Spektrum luas: Gram +, -, riketsia,
mycoplasma, spiroket, klamidia
Aktivitas: hambat sintesis protein
 subunit 30S: hambat ikatan aminoakil-tRNA
ke situs A ribosom
-aplikasi : - manusia
- veteriner
- ternak: unggas, babi
- pengawetan : daging, unggas, ikan
29
30
Pengembangan:

Rekayasa genetik ?
-Transformasi  Streptomyces
-Antibiotik baru
???
31