Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Bright sources of radiation and high energy electrons using gas, solid and nano-structured targets irradiated by short intense laser pulses M. Agranat, N. Andreev, S. Ashitkov, A. Emelianov, A. Eremin, V. Fortov, A. Frolov, E. Gurentsov, O. Kostenko, S. Kuznetsov, A.Ovchinnikov, O. Rosmej 1, A. Shevelko, D. Sitnikov Joint Institute for High Temperatures Russian Academy of Sciences, Moscow JIHT RAS 1GSI- Darmstadt research center with ion and laser beams Workshop on High Energy Density Physics with Ion and Laser Beams Organized by EMMI, GSI and JIHT RAS November 21 - 22, 2008 Outline Introduction PHELIX status and where we are Laser wakefield electron acceleration by PHELIX in guiding structures In gas jets Ion sources by optical field ionization residual ion energy ponderomotive acceleration X-ray radiation using solid and nano-structured targets mechanisms of hot electrons production optimization of Kα x-ray yield Powerful sources of terahertz radiation terahertz radiation in magnetized plasma low-frequency transition radiation Mega-gauss magnetic fields in laser plasmas Long high-energy pulses of 1- 20 ns duration at 400 - 1000 J energy Beam-time 08.12 – 19.12.08 Short high-power pulses of 1 – 10 ps duration at 100 J energy Short high-power pulses of 0.4 – 10 ps duration at 500 – 50 TW power where we are with PHELIX intensity focus intensity (W.cm-2), 100 J, 1 ps pulse 19 x 10 -150 -100 2 75% in 50 mm* 1.5 Y,mm -50 EL= TV/cm 0 1 50 100 150 200 0.5 Strehl ratio: 0.3 -150 -100 -50 0 50 100 150 200 X,mm 0 Interaction of short intense laser pulses with ionizing gases JIHT RAS Residual Electron Energy 3 10 electron energy [eV] laser pulse parameters: IL=1016 W/cm2, tL = 13 fs atomic potential: U(y)= -1.61 exp(-y2), U1=24.6 eV Qe(t), quantum 2 10 1 10 Qfin(t) "semi-classical" single particle calculation 0 10 -1 10 -10 -5 0 (x-ct)/l0 5 “semi-classical” single particle model t P (t ) N (t ) P(t , t * , p * )(t * , p * )d 3 p * dt * , 1 t Q(t ) N (t ) Q(t , t * , p * )(t * , p * )d 3 p * dt * , 1 k (p , t )d 3p 1 Ea.u. ~ E (t ) Jk p 2 Ea.u. ~ Wk ( E(t ) ) exp ~ JH 2mJ H E(t ) Jk d 2 p* ( p*E~ )dp*E~ JH 2mJ H 10 Expected potential JIHT RAS of laser – plasma acceleration of electrons Electric field of plasma wave (with phase velocity ~ c, lp=2c/wp): EP [V/m] ≈ 102 ( ne [cm3] )1/2 g1 w p / w0 = n / n0 – plasma wave amplitude; at = 0.31.0, ne=10171018 cm-3: EP = 10 100 GV/m maximum of accelerating gradient in traditional accelerators (RF linac): ERF ~ 10 - 100 MV/m Exponential growth of “the Livingston curve” began tapering off around 1980 Laser-Plasma Acceleration of electrons with record gradients ~ 10 GV/m JIHT RAS Z Axis ensity Normalized laser pulse int and wakefield potential 0.50 laser pulse injected electrons wakefield potential 0.25 0.00 -0.25 0 2 = xis XA 4 6 k pr 8 10 5 0 10 15 25 20 ) - Vgt Y Axis = k p(z The result of optimization of laser and plasma parameters for the monoenergetic acceleration of a short electron bunch in the wakefield generated by the 50 TW, 100 fs laser pulse in the plasma channel Parameters and results of some experiments ctL≈lp/2 for standard LWFA scheme P (TW) I (W/cm2) tL (ps) l (mm) Ne (cm-3) DE (MeV) Eac (GV/m) Japan (KEK) 8 1017 1.0 1.05 1015 5 0.7 France (LULI) 12 4×1017 0.4 1.05 2×1016 1.5 1.5 Japan (JAERI) 2 8.4×1017 0.05 0.8 1018 France (LOA) 30 3×1018 0.03 0.8 2.5×1019 for Self-Modulated LWFA scheme P (TW) I (W/cm2) 20 200 200 ctL>>lp tL (ps) l (mm) Ne (cm-3) DE (MeV) Eac (GV/m) UK (RAL) 25 1019 0.8 1.05 1019 100 France (CEA) 5 1019 0.3 1.05 1020 20 USA (CUOS) 4.5 1018 0.4 1.05 1019 30 100 USA (NRL) 2.5 4×1018 0.4 1.05 3×1019 100 100 3 1017 1.0 1.05 1019 17 30 Japan (KEK) 100 Nonlinear Resonant Excitation of the Wakefield in Plasma Channel JIHT RAS z = 6.7 cm 1.0 0.8 2.0 0 0.6 1.5 0.4 0.2 1.0 0.0 0 0.5 1 = 2 r k p0 3 4 0 10 40 30 20 t) (z - c k 0 = p 50 50 = k 40 p0 30 (z - 3 20 ct) 2 10 0 1 0 k p0r = CO2 laser: l = 10.6 mm, PL= 2.5 TW, t = 2 ps, rL= 101 mm, PL/Pcr=0.16 N0=1.1×1016cm-3, Rch= 202 mm, Lch= 7 cm PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 041301 (2003) 4 0.0 n(, ) / N |a(, )| 2.5 JIHT RAS Physical Restrictions on the Energy of Accelerated Electrons in Laser-Plasma Accelerators Maximum length of acceleration: la Ldeph Energy gain: Laser Pulse Diffraction: 2(c v ph ) c g2 l p , g w0 n c wp ne eD DWe eEala la 2mc2 g2 lp / 2 Ldiff Z R for LWFA lp 2 2 rL2 l , a02 PL / rL2 a02 l [mm] DWdiff [ MeV] 960 P [TW] t [ fs] JIHT RAS Main Processes Accompanying the Propagation of Short Intense Laser Pulses in Gases Typical parameters Laser pulse: Imax>1015W/cm2 , FWHM < 1 ps, l ≈ 1 mkm Gas: comparatively light atoms Z < 10, nat<1019cm-3 Laser Pulse Electron Density •REE •DIL Plasma Laser Pulse Distortions: •LASRS •RS-F & S-M •Filamentation •Diffraction •Refraction Gas Ultrashort pulse of high-frequency Wake field harmonics = z - ct Kinetic equation for electron distribution function f (r,p, t ) f (v) f e(E 1[vH]) f (r,t ) (p) St t c p w 2mU / e E < 1 tunnel ionization (p) Keldysh parameter w is the laser radiation frequency, U is the ionization potential of atom or ion, m (e) are the electron mass (charge), E is the electric field of the laser pulse. ionization rate: Z 1 W N k 1 k k 0 and Ion Kinetics: N0 Nk NZ W1N 0 , Wk 1N k Wk N k 1 , WZ N Z 1 t t t Wk+1 is the (ADK) probability of tunnel ionization per second of the ion with the ionization degree k (k = 0 corresponds to a neutral atom), No is the density of ions. Cold Electron Hydrodynamics Integration of the kinetic equation over p gives an equation for electron charge density: e (r,t ) e d 3p f (r,p,t ) Where J(r, t ) d 3p v f (r,p, t ) e div J e t is the electron current density: e J2 J 1 J e J2 1 1 ( J ) J J div = 1 J( JE) J E + [JH ] e m t e e2c2 e c ec2 3 c2 e NEW The influence of ionization to the momentum density takes place in the lower order of nonlinearity: Pe 1 ( Ve )Pe Pe e (E [VeH]) t ne c Maxwell equations in the presence of ionization processes rotH 4 1 E (J + J ) ion c c t IONIZATION Ionization current (nonlinear polarization during ionization) E Z 1 J ion 2 W k 1N kU k E k 0 fulfills the energy and momentum conservation laws: Z 1 wk ,w N k ,w w Wm 1 N mU m t t m 0 and charge conservation relations for the ionization charge density ion: ion t div Jion 0 Z 1 S N k ,w k k W N U m 1 m m t c2 t w m 0 as well as for full free charge density Z (r, t ) e d 3p f (r, p, t ) e mN m div J 0 t m 1 Electron Acceleration in the Focus Laser Parameters: l01.053 tFWHM=300 fsec w0=100 mm IL=2x1018W/cm2, EL=190 j Plasma Density: ne=2.5 1016cm-3 g=200 Injected Electrons with Einj=g mc2 are accelerated to E~0.8 Length of acceleration la~Ldiff~10 cm GeV, How to Increase the Final Energy of Electrons or Emitted Radiation? - By Optical Guiding to Overcome Diffraction! By Self- focusing (?): P Pcr 1.7 10 2 g2 [ TW ] g2 < 59 P[TW] In Plasma channels or/and optical waveguides(!): DWch [ Mev] 30( lp / rL )2 P[TW] 1.2 103 P[TW] / (kp rL )2 The possibility to produce plasma channels (or guiding): - Plasma Channels in “free space”: gas filled chambers o by axicon focusing or ionization channeling - Capillary Waveguides: o “Burned” capillary (Capillary discharge; Fast Z-pinch discharge); o “Cold” capillary waveguides (gas filled tubes, OF Ionization). • eigen (main) mode propagation (rL~Rcap – limited contrast) • wide capillary with gas density depletion: high contrast JIHT RAS Laser pulse channeling in a capillary waveguide Nm u u ~ E (r ) Cn J 0 (kn r ), kn n i s 2 n 1 a k w a Laser pulse a 2 Cn E (r ) J 0 (un r / a) rdr , J 0 (un ) 0 2 a J1 (un ) 0 for the Gaussian laser pulse E(r) =E0exp(-r2/r02) Energy coupling to the main mode 98% at r0/a=0.645 Laser energy leakage: IL(z) = I0exp(- z / LD) w>1 z 1 D, n L 2a un2 1 w 2 3 k0 a w 1 Laser Wakefield Electron Acceleration JIHT RAS Focusing system Accelerated electrons Plasma Qb 100pC Ne-bunch 109 Electron injector Wake wave Laser pulse l0 = 1.053mm tFWHM = 300 fs w0=200 mm EL=150 j ne=1.71016 cm-3 E ~ 2.7 GeV/м B. Cros, et al. Schematic view of the experiment at the Lund Laser Center Ltrap~10 cm, Lacc~ 1 m Wakefield generation by guided laser pulses spectroscopic diagnostics of the wakefield JIHT RAS Frequency Shift of the Pump Pulse 0.0 1.0 pump: z=0 z = 1 cm z = 3 cm z = 6 cm 0.8 pump: red frequency shift w>1 -0.5 -1.0 Dw/ wp 0.4 -1.5 analytical modeling -2.0 0.2 z -2.5 0.0 2a -3.0 760 780 800 820 840 860 880 900 920 940 960 980 1000 0 10 20 l [nm] 30 40 50 60 z [mm] Spectrum Modulation of the Probe Pulse Short intense laser pulse at the capillary entrance, z = 0. full scale modelling analyt approximation, Eq. (17) 1.0 z = 4 cm 0.3 Wakefield Diagnostic laser pulse 0.2 I(w) 0.8 Y (r =0, ) I(l) 0.6 Laser pulse 0.6 0.4 0.1 0.2 0.0 0.0 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Dw / wp = (w-w0) / wp -0.1 -40 -20 0 wp = wp(t - z/c) 20 40 A ( z) Cr k0 k p2 z 1 2 sin 2 4 1 1 I ( z ) I ( z 0) Long low-energy electron bunch will be trapped and compressed in the wakefield 1.0 p=100, kpr0=3.35, kpl0=2.355 0.8 0.6 0.8 laser pulse boundary of focusing phase 0.6 0.4 a(r=0, ) |e|/mc 2 1.0 0.4 2 Einj / mc =5.43 0.2 0.2 electron bunch 0.0 0.0 -0.2 -0.2 0 5 10 15 20 25 =kp(z-Vt) N.E Andreev., S.V. Kuznezov. Electron Bunch Compression in Laser Wakefield Acceleration.// http://icfa.lbl.gov/icfapanel.html/Newsletter/Special Issue: Giens Workshop Proceedings, June 24 - 29, 2001. Computer simulation by the code LAPLAC JIHT RAS Results of full scale modeling including laser pulse dynamics, gas ionization and bunch loading 0 10000 20000 30000 40000 0.10 4000 40 35 3000 0.06 2000 0.04 1000 n [mm*mrad] 2 30 < > / mc 2 Drms / < > 0.08 25 20 15 10 0.02 5 0.00 0 0 10000 20000 30000 40000 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Lacc / Lph kpzacc Parameters of the laser pulse and electron bunch a0 e EL mcw 1 ph w / w p 100 Einj 10 MeV Lb 1.26 k p1 Rb 0.15 k p1 0.7 PWFA and LWFA Afterburning for High Energy Physics and Hard X-rays C. Joshi and T. Katsouleas, Physics Today, 2003 a pair of PWFA energy doublers, installed on either side of the collision point of the Stanford Linear Collider (SLC), that serve to double the energies of the electron and positron beams from the present 50 GeV to 100 GeV. after-burning ERLP-electrons using Laser Wakefield Acceleration (LWFA) amplified electron bunch electron bunch x-ray`s electron injector beryllium window 35 MeV ASTeC Capillary / gas jet >350 MeV [email protected] Interaction of short intense laser pulses with ionizing gases JIHT RAS Multi-group Residual Electron Energy Distribution of many-electron atoms -2.0 -1.5 -1.0 -0.5 0.0 4 10 0.5 7 6 3 3 laser pulse parameters: IL=1019 W/cm2, tL = 70 fs, l=0.78mm 2 Nitrogen gas 5 2 10 4 1 10 Zeff Te [eV] 10 0 10 1 -1 10 -2.0 -1.5 -1.0 -0.5 0.0 0 0.5 t / 70 fs Energy of electron groups and relaxation times (N2=1.5×1019 W/cm2) k 1 2 3 4 5 Qe,k [eV] 3.3 9.7 23.4 79.5 120. tee,k 60 fs 150 fs 380 fs 1.8 ps 2.6 ps 6 7 39103 39103 13 ns 13 ns Ion sources by optical field ionization JIHT RAS produced by A large amount of ions with low temperature (less than 100 eV), low momentum spread and narrowed charge state distribution can be produced by petawatt-class short-pulse laser JIHT RAS X-ray radiation of laser plasma Focusing system 1240 nm, 80fs, 10 12 W, 10 Hz ~10 18 W/cm2 X-ray Hamos Spectrometer X-ray Vacuum camera Mg, Cu target Measurement of the reflected pulse X-ray radiation using solid and nano-structured targets JIHT RAS Optimization of Kα x-ray yield K radiation from Cu laser-produced plasmas Cr:Forsterite laser system, w0, p-polarization, EL=30 mJ, tL = 80 fs, 1016 ÷ 1017 W/cm2 INTENSITY, 10 10 phot/A sr 15 8 4 20 N (10 phot) Single laser short experiment model experiment 25 K1 Cu sho t #2 3m-16 K 2 10 5 0 0 5 10 15 20 25 30 35 40 Ep, mJ 0 1.50 1.5 2 1.54 1.56 WAVE L ENGT H, A E0 EL 1 (1 f 1/ 2 sin Th, keV 7.6I L,16l2mm 2 sin 2 The model calculation of Kα yield against pulse energy in comparison with experimental data received at IHED laser facility: λ = 1.24 mm, tp = 80 fs, df = 10 mm, = 45, Fe target E0 – driving, EL – laser field, f –absorption, = 1.57, IL,16 = IL/1016 W/cm2 – laser intensity There is a range of laser pulse parameters in which Kα yield may be described by vacuum heating mechanism nano-structured targets Fe clusters on Cu target JIHT RAS A.V. Eremin Laboratory X-ray radiation using solid and nano-structured targets produced by JIHT RAS Fe clusters on Cu target E0 3EL cos 1 40 40 flat target clustered surface N (10 phot) 30 20 20 8 8 N (10 phot) 30 flat target clustered surface 10 10 0 0 15 20 25 30 35 40 45 50 (deg) Dependence of Kα yield on angle of incidence for peak intensity 31017 W/cm2 5 10 15 20 16 I0, 10 W/cm 25 30 2 Dependence of Kα yield on peak intensity for angle of incidence 30 Th,keV 68.41 I L,16lm2m cos2 1 Enhancement of driving electric field at a cluster surface and favorable conditions for Kα photons to escape from the wafer lead to considerable enhancement of Kα yield Powerful sources of terahertz radiation produced by JIHT RAS SiO2 aerogel, ρ=0.02 g/cm-3 Magnetic field (ωp>>Ωe=eB0/mec) Vacuum Chamber ω 0 z 0 THz ω Lens Mirror N0e >Ncr=meω02/4πe2 Capillary tube Solenoid Laser Window 0 0 z THz THZ 1 t 1THz THz radiation WTHz w02 VE2 WL 2 2 2 2 w p c w pt THZ w p 2 1THz dWTHz 0.5 2 2 dz w0 t 1 2 k 2R2 p L VE2 WL 4c 2 L Laser: λ0=1.053mm; τFWHM=0.5ps; IL=2·1018 W/cm2; RL=50 mm (WL=100J) Plasma: N0e=6·1021 cm-3; ωpτ=1200 Plasma: N0e=1.4·1016 cm-3; ωp =6.7 ·1012 s-1 THz: PTHz ≈ 30 MW; WTHz ≈ 10mJ; WTHz/WL≈ 10-7 THz: WTHz/WL≈3·10-4z[см]; z=10см : PTHz≈10GW; WTHz≈0.3J; WTHz/WL≈3·10-3 Mega-gauss magnetic fields in plasmas JIHT RAS B produced by Circularly polarized Laser pulse w p VE2 / c 2 eBz me cw0 2w02 (1 VE2 / c 2 2 For relativistic laser intensities, VE at critical density, w p w0 / c 1 e w0 Laser: λ0=1.053mm; τFWHM=0.5ps (τ=0.3ps); IL=3·1019W/cm2 ; RL=15 mm (WL=100 J; PL= 300 TW) gas: N0e=3·1019cm-3 → Bz≈ 3МГс ; aerogel: N0e~1021cm-3 → Bz≈ 100 MGauss 1.8 107 B0[G]s 1 w p 6.7 1012 s 1 0.1w p B0 3.7 104 G Thank You for attention! JIHT RAS Thanks! Filamentation instability of short intense laser pulses analytical theory and predictions JIHT RAS The solution leads to the following expression by inverse Laplace transform of intensity perturbation i 0 ( 1 dp p ig (q I ( , , q I 0 e e e ig (q 2 i i0 p g (q q2 l2 1 2 1 p2 If diffraction exceeds the non-linear effects, l<p, we obtain from above equation for q<1 1/ 3 I ( , , q 2 2 2 I 0 6 a0 ( 1/ 6 1/ 3 1/ 3 2 2 2 2 2 3 3 a0 q 3 a0 11 exp cos 4 4 2 4 4 12 in the opposite limit of longer wavelength perturbations, where the nonlinear effects exceed diffraction I (q 1 q(qb3 q 3 I 0 2 2 1/ 2 exp q qb3 q 3 , 2 ( qb 2 (a0 / 1/ 3 ( The growth rate of dynamical filamentation has a maximum for qmax k max / k p a0 | | /( 2 ) The corresponding maximum growth rate Gmax 3 2 5 / 6 ( 2 2 1/ 3 a0 N.E. Andreev, L.M. Gorbunov, P. Mora, R.R. Ramazashvili, Phys. Plasmas 14, 083104 (2007) 1/ 3 Filamentation instability of short intense laser pulses numerical modelling results and estimations JIHT RAS Contour plots of intensity perturbations and of spectrum of perturbations for different pulse propagation distances z = 100, 300, 600 Contour plots of normalized electron density perturbations at z = 600 R for a laser pulse with radius R our consideration is limited by the propagation distance < (k p R / )3 a0b / 2 for exp growth N>>1 2(2 / 3) 3 / 2 N 3 (a 0 b ) 2 a0b (k p R) 2 N / 3 N.E. Andreev, L.M. Gorbunov, P. Mora, R.R. Ramazashvili, Phys. Plasmas 14, 083104 (2007) Wakefield generation by guided laser pulses Nonlinear Plasma Response JIHT RAS To describe the slowly varying motions and fields in plasma we use Maxwell's equations and the relativistic hydrodynamic equations for cold plasma electrons with allowance made for the process of tunneling gas ionization: p 1 mc 1 2 eE mc 2 0 p 0 a Re2 (a a e z t n 2 n 2 n0 n 1 B E div (nv) 0 4env c rotB rotE t t c t t In the quasi-static approximation by using the dimensionless commoving variables: S 1 2 1 (e z q) E 0 q a e z Re S 2 a a e z 2 8 2E (u z 1) ( u ) S 0 0 E ( u ) 2 ( S0 0 N0w p 0 na N 0w p 0 Z n 1 Wk Dk k 0 Z n 1 S k 0 (k ) 0 S2 , 2 N 0w p 0 2m S 0 The normalized ionization current can be explicitly expressed through the harmonics of the ionization source: G ( ion) 4e (ion) k p 0 2a J k0 a 2 mw 2p 0 c Z n 1 S k 0 (k ) 0 Uk a S2 mc 2 4 JIHT RAS Nonlinear plasma response – Effective Potential The nonlinear relativistic plasma response can be expressed through a single scalar function (potential) : 0 D S 2 a 0 m S 1 Re a * a * 0 4 4 1 2 a S 0 m qz qz Re a * a * 2 4 ( ( d d q z S The electric and magnetic fields in plasma can be also expressed through the potential : Ez , E r B , For a wide (in comparison with the plasma skin depth 1/kp) laser pulse the equation for the potential can be linearized with respect to the small parameter | 1 | /( k p L ) 2 02 2 ln 0 3 0 D (D 0 ) 2 2 2 2 1 a 2 0 D a 1 2 4 ( S TIME EVOLUTION OF LASER INTENSITY EL.ENERGY,ev Quantum gravitation, quantum electrodynamics ELI a~ 1027 g -B.HOLE Е ~ 0.1PW/m FELIX JIHT Н~340MGs P~300 Gbar Ponder P~Hydro P~1Mbar Sun-5.6 103 W/cm2 K radiation from laser-produced plasmas Cr:Forst laser system 1.24 μm, EL=100 mJ, 80 fs, 1016 ÷ 1017 W/cm2 Cu 12 K1 8 K 4 0 1.5 32 Fe K1 6 K 11 shot # 23n - 11 Intensity [10 phot / A ster] Intensity [10 10 phot / A ster] 8 s hot # 23n-28 4 2 0 1.5 36 1.5 40 1.54 4 1.54 8 1 .93 0 1.935 Wavelengt h [A] 1.940 Wav len g th [A] Single short X-ray spectrum 1.945 1.950