Download E=0_example

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
For the charge distribution shown below:
1. At what distance from the origin would the electric field = 0?
2. At what distance from the origin would the electric field = 9.625x104 N/C?
E1
E1
E2
E2
+
0
q1
E1
1m
25mC
2m
E2
+
3m
4m
q2
5m
6m
40mC
The electric field can only equal zero in the region between the
two charges.
The point will be nearer q1 since it has the smaller charge.
E1
E2
P
+
0
q1
1m
x
+
2m
3m
4-x
E1  E2
4m
q2
5m
6m
k q1
k q2
 2
2
r1,P
r2,P
q1
q2
 2
2
r1,P
r2,P
q1
q2
2 
x
(4  x) 2
q1
q2
x  (4  x)
q1  (4  x) 
q2  x
4 q1  x q 1  x q 2
4 q1  x q 2  x q 1
4 q1  x q 2 
x
q1 
4 q1
q 2  q1
x
4 25  10 C
25  10 6 C  40  106 C
x
4 25
25  40
6
x  1.77m
2. At what distance from the origin would the electric field = 9.625x104 N/C?
E1
E1
E2
E2
+
0
q1
E1
1m
25mC
2m
E2
+
3m
4m
q2
5m
6m
40mC
To the left of q1 both fields are negative therefore there is no point
to the left q1 where the electric field could be 9.625x104 N/C .
Between the two charges (0 < x < 4m) the field due to q1 is
positive and the field due to q2 is negative. We found that at a
point 1.77m from the origin the electric field is zero. There could
be a point between the origin and 1.77m with the required
electric field.
To the right of q2 (x > 4m) both fields are positive so there is a
point to the right of q2 where the total field is 9.625x104 N/C .
0 < x < 4m
E2
q1
+
P
+
0
E1
1m
x
2m
3m
4m
q2
5m
6m
4-x
E1  E2  9.625  104 N
C
k q1
k q2
4 N


9.625

10
C
r12
r22
2
2


9 N  m 
6
9 N  m 
6
9  10

25

10
C

9

10

40

10
C



2 
2 


4 N
C
C


9.625

10
C
 4  x 2
x2
2
2


9 N m
6 
9 Nm
6 
259  10
 10 C 409  10
 10 C
2
2




4 N
C
C


9.625

10
C
4  x 2
x2
9.625  10 4 N
25  40 
C
x 2  4  x 2 9  109 N  m 2  10 6 C
C2
25  40  10.69m 2
x 2  4  x 2
5 
8
2
2  2.138
4  x
x
54  x 2  8x 2
 2.138
2
2
x 4  x
516  8x  x 2   8x 2
x 16  8x  x 
2
2
 2.138
80  40x  5x 2  8x 2  2.138
16x 2  8x 3  x 4
80  40x  3x 2  34.208x 2  17.104x 3  2.138x 4
2.138x 4  17.104x 3  37.208x 2  40x  80  0
y  2.138x  17.104x  37.208x  40x  80
4
3
2
Solve by graphical analysis to find values of x for
which y = 0.
Step 1. Use a spreadsheet to create a data table.
Step 2. Copy and paste data into graphing software such as
Cricket Graph.
Step 3. Plot graph of y vs. x.
Step 4. Adjust scales of axes to determine a more precise value of x.
Step 5. Continue adjusting scales until desired precision is
achieved.
x=1.2508m
x > 4m
E2
E1
+
+
0
q1
1m
2m
3m
4m
q2
Q
5m
6m
x
x-4
E1  E2  9.625  104 N
C
k q1
k q2
4 N


9.625

10
C
r12
r22
2
2


9 N  m 
6
9 N  m 
6
9  10

25

10
C

9

10

40

10
C



2 
2 


4 N
C
C


9.625

10
C
x  4 2
x2
2
2


9 N m
6 
9 Nm
6 
259  10
 10 C 409  10
 10 C
2
2




4 N
C
C


9.625

10
C
 x  4 2
x2
9.625  10 4 N
25  40 
C
x 2 x  4 2 9  10 9 N  m 2  10 6 C
C2
25  40  10.69m 2
x 2 x  4 2
5  8x 2  2.138
x 2 x  4  2
5 x  4 2  8x 2
 2.138
2
2
x  x  4
5 x 2  8x  16   8x 2
x  x  8x  16
2
2
 2.138
5x 2  40x  80  8x 2  2.138
x 4  8x 3  16x 2
13x 2  40x  80  2.1385x 4  17.104x 3  34.208x 2
2.1385x 4  17.104x 3  21.208x 2  40x  80  0
y  2.1385x  17.104x  21.208x  40x  80
4
3
2
Solve by graphical analysis to find values of x for
which y = 0.
Step 1. Use a spreadsheet to create a data table.
Step 2. Copy and paste data into graphing software such as
Cricket Graph.
Step 3. Plot graph of y vs. x.
Step 4. Adjust scales of axes to determine a more precise value of x.
Step 5. Continue adjusting scales until desired precision is
achieved.
X = 6.0003m
0
q1
+
P
+
2m
1m
3m
4m
q2
5m
1.77m
r1,P  1.77m
r2,P  2.23m
2
r1,P 2
 0.63
r    1.77m

2.23m
 2,P 
q 1 25  10 6 C
q 2  40  10 6 C  0.625  0.63
6m
Related documents