Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Jae-Min Kwon b,c b C.S. Chang , S. Ku , and J.Y. Kim a a Korea National Fusion Research Institute b Courant Institute, New York University c Korea Advanced Institute of Science and Technology Feb. 14 ~ 15. 2008 Laboratory, Space/Astrophysical Plasma Workshop, POSTECH Contents I. Gyrokinetic plasma model II. Particle In Cell(PIC) simulation method III. Delta-F simulation method IV. Numerical implementations In tokamak geometry V. Ion Temperature Gradient(ITG) mode simulations VI. Neoclassical simulation of tokamak plasma VII. Future directions Introduction • Plasma turbulence causes a rapid loss of the plasma energy and particles to the tokamak wall. • From 1994, numerical simulation of tokamak plasma turbulence has been done with gyrofluid and gyrokinetic approaches. • The gyrokinetic approach is the fundamental one including all necessary features of the plasma turbulence responsible for the anomalous transports. Introduction M.R.Wade 2003 S.Either et al, IBM J. RES. & DEV. Vol. 52 2008 Gyrokinetic Plasma Model Original Vlasov Equation Gyrokinetic Description Drift Kinetic Description 1 ( R, v|| , , t ) ( R g , v|| , , t ) N g Gyrokinetic Plasma Model Gyrokinetic Theory ( X ,V|| , , ) 6-d phase space : rapid variation in i1 10 8 sec dV|| Fi Fs dX Fs CS t dt dt V|| ( X ,V|| , ) 5-d phase space : averaged out perturbati vely Fs Fs ( X ,V|| , ) Basic assumptions k|| i ~ ~ ~ O( ) i k Te Ln k i ~ O(1) Simulation Methods Eulerian Simulation Method F ( x , v , t ) f ijnkl (t ) ijnkl ( x , v ) ijnkl d f ijnkl ... dt Lagrangian Simulation Method F ( x , v , t ) w p (t ) ( x x p (t )) (v v p (t )) p d x p ... , dt d v p ... , dt d w p ... dt Gyrokinetic Plasma Model Equations of motion for gyrocenter ˆ d b * X V||bˆ bˆ B dt B B X d V|| bˆ * B bˆ * dt ˆb * bˆ V|| bˆ bˆ bˆ B Gyro-averaged potential (potential felt by the charged ring) 1 ( X , , t ) 2 2 0 1 N ( X , t )d ( X g , t ) N g 1 Gyrokinetic Plasma Model Gyrokinetic Poisson Equation 1 i2 2 b ~ ~ 2 2 exp( i k x ) 4 n n 1 b k i 2 2 i e 2 1 D k i 4 [ni ne ] , 2 i 2 2 D k 1 2 2 i Charge density from gyro-ring 6 ni ( x, t ) Fi ( X ,V|| , , t ) [(X i ) x ]d z Adiabatic Electron Response Model e( s ) ne ni 0 exp T e Simulation Methods Delta-f Simulation Scheme dV|| Fs Fs dX Fs CS t dt dt V|| dV|| dV|| dX dX ( Fs 0 Fs ) ( Fs 0 Fs ) ( F Fs ) C S V|| s 0 dt t dt dt dt 0 1 0 1 dV|| dX Fs 0 Fs 0 Fs 0 C S Assume Fs 0 FMaxwellian t dt 0 dt 0 V|| dV dV dV|| dX dX dX || || Fs Fs F Fs 0 Fs 0 Fs 0 dt V|| s dt t dt dt t dt dt V || 0 1 1 0 1 1 We solve this part only ! Noise Reduction by Fs / Fs 0 ( 1 for tokama k core) Tokamak Geometry B Modes tend to be aligned to the magnetic field direction. Efficient representation in the field aligned coordinate : ( , q ) Parallelization Processor 2 Processor 1 Processor 0 Processor N-1 toroidal direction • Straightforward domain decomposition beyond the plasma boundary. • Relatively low memory and communication costs. • Hard to apply high order (> 2) time integration scheme (needed for fast ion species, electrons) Parallelization Decomposition by Toroidal Mode Number + + Processor 0 Processor 1 + …… + Processor 2 Grid system based on quasi-ballooning coordinate ( , , , t ) n ,ij (t )Qi ( )Q j ( ) exp[ in ( i ( ))] n ,ij n,ij (t ) n,ij N (t ) exp[ in i (2 )] i ( ) 0 B d B Quadratic spline representation of the slowly varying part i Spatial Grid Requirements Radial Direction : 1/ r ~ kr 1/ i Poloidal Direction : 1 / ~ k|| k r Toroidal Direction : 1 / ~ k k / q Processor N-1 Field Solver Gyrokinetic Poisson Solver 2 ti2 1 2 2 4e f i ( R, v|| , , t ) ( R i x )d 6 z 4eg ( x ) Di De ti2 n2 1 1 2 n,ijQi ( )Q j ( ) exp[ in( i ( ))] 2 2 n,ijQi ( )Q j ( ) exp[ in( i ( ))] 4eg ( x ) De n,ij n,ij R Di Multiply n,ij element and integrate over x 1 2 n2 2 RdRdZ exp[ in i ( )] Qij 1 2ti Qij 2 2 QijQij n ,ij exp[ in i ( )] ij Di De R 4e Rd dRdZQij exp[ in ( i ( ))] g ( x ) sn ,ij ti2 1 n2 LHS 2 RdRdZ 1 2 Qij exp[ in i ( )] Qij exp[ in i ( )] 2 2 QijQij exp[ in i ( ) i ( ) ]n ,ij ij De R Di 2 2 Qij Qij n QijQij i i 1 n2 ti 2 dRdZR 1 2 2 2 QijQij n ,ij exp[ in i ( ) i ( ) ] M n ,ij,ijij ij i j Di in Qij Qij i Qij i Qij De R M ij n ,ij ,ij n ,ij sn ,ij : solved by sparse matrix solver (multi-grid, umfpack) fewer grid points, faster computation Field Solver Evaluation of Turbulent Electric Field Qi ( ) Qi ( ) 0,ij Q j ( ) 2 Re n,ij Q j ( ) exp[ in ( i ( ))] ij ij,n1~ N Q j ( ) Q j ( ) ( ) 0,ij Qi ( ) 2 Re n ,ij Qi ( ) exp[ in ( i ( ))] in i Q j ( ) ij ij,n 1~ N 2 Re (in)n,ij Qi ( )Q j ( ) exp[ in( i ( ))] ij,n1~ N Conserved energy ti2 ti2 1 2 2 2 1 1 3 2 3 Z 2 Z 2 d z m v f d x d x const 2 2 2 2 i i 8 Di De Di 6 ti2 1 N * n 2 2 2 * 0 n,l M lln,l d x 2Di 2De 0,l M ll0,l 2 Re n 1 3 Simulation Procedure Ex) 2 nd order Runge-Kutta) calculate source : z np solve field equation : n Start Load initial profiles Setup Grid System Load marker particles push marker particles : t z *p z np z np , n 2 calculate source : z *p solve field equation : * Diagnosis push marker particles : End z np1 z np t z *p , * ITG Mode Simulation n 10 n 15 n 20 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 -0.2 -0.2 -0.2 -0.4 -0.4 -0.4 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 ITG Mode Simulation turbulent potential at t=110 turbulent potential at t=160 ITG Mode Simulation zonal potential at t=110 zonal potential at t=160 ITG Mode Simulation Ion Heat Flux (normalized by gyro-Bohm level) ITG Mode Simulation 0.4 0.4 0.2 0.2 0.0 0.0 -0.2 -0.2 -0.4 -0.4 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 t 10 transit 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 t 20 transit ITG Mode Simulation Thermal flux time history (normalized by local gyroBohm level) t 21 transit r / R0 1.7 Electromagnetic Turbulence Simulation p|| - Formulation, neglecting compressional Alfven modes f s dR f f s p || s 0 t dt p|| p|| v|| q A|| mc f s f s 0 ( R, p|| , , t ) f s ( R, p|| , , t ) m f s 0 ( R, p|| , , t ) n s 0 s 2Ts 3/ 2 m m exp s p||2 v 2 n s 0 s 2Ts 2Ts dR q B* bˆE c p|| A|| B E c dt mc B* B* q dp|| B q * BE dt B* m m p|| c A|| 3/ 2 1 exp Ts m s p||2 B 2 i2 2 42D [ni ne ] pe 4 A|| 2 A|| j||i j||e c c 2 Electromagnetic Turbulence Simulation Cancellation Problem : Curse of the large terms pe 2 A|| c 2 4 A|| j||i j||e c analytic skin term j d vq p f d vq p h 3 ||e e || e 3 e || e qe f e 0 Te p || A|| c qe2 3 2 non ad d vqe p||he d vA p f j||ad || || e 0 e j||e cTe 3 2 A|| pe / c A|| 2 ~ 2s L2 4 ad A|| j||i j||non e c 2 numerical adiabatic current The analytic skin term and the numerical adiabatic current should be cancelled very accurately ! The problem gets worse for long wave length modes ! Radial transports by Coulomb collision and RF heating RF resonance plane V V Banana width random walk for a trapped particle by Coulomb collision. V V Perpendicular velocity change of a trapped particle by RF heating at resonance plane. Banana tips move to the resonance plane Velocity space at outer mid-plane V2m V||m Kinetic energy of resonant particle : E Increase of kinetic energy by RF heating : Turning points : Bt E 1 mIV||2 BR 2 E BR E BR BR C.S. Chang et al, Phys. Fluids B2, 2383(1990) Critical slowing down speed RF heating Slowing down by electron collision Pitch angle scattering by ion collision G.D.Kerbel et al, Phys. Fluids B2, 3629(1985) Coulomb Collision Operator 1 2 v v 0 v 1 0 1 2 v v 1 0 v 0 C[f s , f ] C[ f , f s ] f s f s f s f s v t 2 v v t v t 2 v v t 0 s 0 s Csls ps f s0 Csls MC collision of marker particles against Maxwellian background ps f s0 Weight modification (for momentum and energy conservation) Monte Carlo implementation of the Coulomb collisions RF scattering c 2 1 2 1 2 c c c c C Dc ||1f s 1f s ||f s ||2f s 2f s 2 2 V V 2 2 V || || || l ss c 2 ||c c || c V V t 2 3 ( R2 0.5) 2 c t 2 3 ( R1 0.5) c ||2 t ||2 ||2 2 2 0 c 1 V|| V||0 ||c1t 2 3 ( R1 0.5) ||c2 t R1 , R2 : uniform random numbers in [0, 1] Weight modification ensuring momentum and energy conservation 2 d V Vth w 3 ( y) V p( x ) 3 ( y) th E Z.Lin et al, PoP 2, 2975(1995) 2 2 dy V V 2 d 2 d Average momentum and energy changes of E 2 V 2 TP p ( x ) 2 V TP 3Vth dt Vth dt marker particles by the test particle collision part Resonant Ion and RF Interaction Model rf V rf qI Qrf V E B f I mI c Quasi linear heating operator : RF wave induced velocity space flux (interaction by the RF field component with right circularly polarized fundamental harmonics only) C.F. Kennel and F. Engelmann, Phys. Fluids 9, 2377(1966) rf rf 2 1 2 rf 1 2 rf rf Qrf ( f ) Drf ||s f s f || f || f f 2 2 V V 2 2 V || || || V|| 1 V p rf v||rfs 2 * 1 Vp b k Vp k|| 2 2 V|| 2 rf * J 0 2 v s 2 2 2 1 J 0 bJ 0 J 0 J 0 bJ 0 J 0 V p Vp Z 2e 2 2 V2 * rf c k||V|| Drf I 2 E 8mI J 2 V v||rf 4 * 0 1 || V p V p RF-resonance condition rfn ( Bn , N h , k|| , En , n ) N h qBn 2 En n Bn rf k|| mc m J 2 v 2 0 2 Vp rf || * V v 8 J 1 || V p rf * 2 0 2 Neoclassical Radial Electric Field 2.0x10 3 E (V/m) 0.0 -2.0x10 -4.0x10 -6.0x10 -8.0x10 -1.0x10 Simulation Result Neoclassical Theory 3 3 Vi|| cTi eB d ln Ti d ln Pi e Er K dr dr Ti 3 3 4 0.00 0.05 0.10 0.15 r/R0 0.20 0.25 Resonant Ion Distribution Function HFH r/R0 = 0.12 (2) 4 HFH r/R0 = 0.16 (3) 4 t = 34 ms t = 34 ms t = 34 ms 3 3 3 2 2 2 1 1 1 0 0 -4 4 -2 0 2 4 HFH r/R0 = 0.21 (5) 0 -4 4 t = 34 ms -2 0 2 4 HFH r/R0 = 0.24 (6) -4 4 t = 34 ms 3 3 2 2 2 1 1 1 0 -4 -2 0 2 4 -2 0 2 4 HFH r/R0 = 0.27 (7) t = 34 ms 3 0 HFH r/R0 = 0.19 (4) 4 0 -4 -2 0 2 4 -4 -2 0 2 4 Resonant Ion Distribution Function LFH r/R0 = 0.12 (2) 4 LFH r/R0 = 0.16 (3) 4 t = 34 ms t = 34 ms t = 34 ms 3 3 3 2 2 2 1 1 1 0 0 -4 4 -2 0 2 4 LFH r/R0 = 0.21 (5) 0 -4 4 -2 0 2 4 LFH r/R0 = 0.24 (6) -4 4 3 3 3 2 2 2 1 1 1 0 0 -2 0 2 4 -2 0 2 4 -2 0 2 4 LFH r/R0 = 0.27 (7) t = 34 ms t = 34 ms t = 34 ms -4 LFH r/R0 = 0.19 (4) 4 0 -4 -2 0 2 4 -4 Future Directions • Efficient schemes for electromagnetic simulation (including compressional branches) • Realistic simulation conditions including various sources, correct neoclassical equilibrium • Full-F simulation for the tokamak edge plasmas • Transport simulation near the marginality, comprehensive transport model for fusion devices