Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Redox Geochemistry Oxidation – Reduction Reactions • • • • Oxidation - a process involving loss of electrons. Reduction - a process involving gain of electrons. Reductant - a species that loses electrons. Oxidant - a species that gains electrons. • Free electrons do not exist in solution. Any electron lost from one species in solution must be immediately gained by another. Ox1 + Red2 Red1 + Ox2 Fundamental electromagnetic relations: • Electric charge (q) is measured in coulombs (C). – The magnitude of the charge of a single electron is 1.602 x 10-19 C. 1 mole of electrons has a charge of 9.649 x 104 C which is called the Faraday constant (F) – q=n*F • The quantity of charge flowing each second through a circuit is called the current (i). The unit of current is the ampere (A) 1 A = 1 C/sec • The difference in electric potential (E) between two points is a measure of the work that is needed when an electric charge moves from one point to another. Potential difference is measured in volts (V) 1 V = 1 J/C – The greater the potential difference between two points, the stronger will be the "push" on a charged particle traveling between those points. A 12 V battery will push electrons through a circuit 8 times harder than a 1.5 V battery. • Ohm’s Law: V = I R potential is equal to current * resistance Half Reactions • Often split redox reactions in two: – oxidation half rxn e- leaves left, goes right • Fe2+ Fe3+ + e- – Reduction half rxn e- leaves left, goes right • O2 + 4 e- 2 H2O • SUM of the half reactions yields the total redox reaction 4 Fe2+ 4 Fe3+ + 4 eO2 + 4 e- 2 H2O 4 Fe2+ + O2 4 Fe3+ + 2 H2O Examples Balance these and write the half reactions: • Mn(IV) + H2S Mn2+ + S0 + H+ • CH2O + O2 CO2 + H2O • H2S + O2 S8 + H2O Redox Couples • For any half reaction, the oxidized/reduced pair is the redox couple: – Fe2+ Fe3+ + e– Couple: Fe2+/Fe3+ – H2S + 4 H2O SO42- + 10 H+ + 8 e– Couple: H2S/SO42- Half-reaction vocabulary part II • Anodic Reaction – an oxidation reaction • Cathodic Reaction – a reduction reaction • Relates the direction of the half reaction: • A A+ + e- == anodic • B + e- B- == cathodic ELECTRON ACTIVITY • Although no free electrons exist in solution, it is useful to define a quantity called the electron activity: pe log ae • The pe indicates the tendency of a solution to donate or accept a proton. • If pe is low, there is a strong tendency for the solution to donate protons - the solution is reducing. • If pe is high, there is a strong tendency for the solution to accept protons - the solution is oxidizing. THE pe OF A HALF REACTION - I Consider the half reaction MnO2(s) + 4H+ + 2e- Mn2+ + 2H2O(l) The equilibrium constant is K aMn2 4 H a a 2 e Solving for the electron activity aMn2 ae 4 Ka H 1 2 WE NEED A REFERENCE POINT! Values of pe are meaningless without a point of reference with which to compare. Such a point is provided by the following reaction: ½H2(g) H+ + eBy convention G of H G of H 2 G of e 0 so K = 1. K a H ae 1 pH22 1 THE STANDARD HYDROGEN ELECTRODE If a cell were set up in the laboratory based on the half reaction ½H2(g) H+ + eand the conditions a H+ = 1 (pH = 0) and p H2 = 1, it would be called the standard hydrogen electrode (SHE). If conditions are constant in the SHE, no reaction occurs, but if we connect it to another cell containing a different solution, electrons may flow and a reaction may occur. STANDARD HYDROGEN ELECTRODE H2 = 1 atm Platinum electrode ½H2(g) H+ + e- aH+ = 1 ELECTROCHEMICAL CELL H2 = 1 atm V Platinum electrode Platinum electrode Salt Bridge 3+ Fe aH+ = 1 ½H2(g) H+ 2+ Fe + e- Fe3+ + e- Fe2+ ELECTROCHEMICAL CELL We can calculate the pe of the cell on the right with respect to SHE using: aFe2 pe log a 3 Fe 12.8 If the activities of both iron species are equal, pe = 12.8. If a Fe2+/a Fe3+ = 0.05, then pe log 0.05 12.8 14.1 The electrochemical cell shown gives us a method of measuring the redox potential of an unknown solution vs. SHE. DEFINITION OF Eh Eh - the potential of a solution relative to the SHE. Both pe and Eh measure essentially the same thing. They may be converted via the relationship: pe Eh 2.303RT Where = 96.42 kJ volt-1 eq-1 (Faraday’s constant). At 25°C, this becomes pe 16.9 Eh or Eh 0.059 pe Free Energy and Electropotential • Talked about electropotential (aka emf, Eh) driving force for e- transfer • How does this relate to driving force for any reaction defined by Gr ?? Gr = - nE – Where n is the # of e-’s in the rxn, is Faraday’s constant (23.06 cal V-1), and E is electropotential (V) • pe for an electron transfer between a redox couple analagous to pK between conjugate acidbase pair Nernst Equation Consider the half reaction: NO3- + 10H+ + 8e- NH4+ + 3H2O(l) We can calculate the Eh if the activities of H+, NO3-, and NH4+ are known. The general Nernst equation is 2.303RT 0 Eh E log Q n The Nernst equation for this reaction at 25°C is aNH 0 . 0592 4 Eh E 0 log a a10 8 NO3 H Eh – Measurement and meaning • Eh is the driving force for a redox reaction • No exposed live wires in natural systems (usually…) where does Eh come from? • From Nernst redox couples exist at some Eh (Fe2+/Fe3+=1, Eh = +0.77V) • When two redox species (like Fe2+ and O2) come together, they should react towards equilibrium • Total Eh of a solution is measure of that equilibrium FIELD APPARATUS FOR Eh MEASUREMENTS CALIBRATION OF ELECTRODES • The indicator electrode is usually platinum. • In practice, the SHE is not a convenient field reference electrode. • More convenient reference electrodes include saturated calomel (SCE - mercury in mercurous chloride solution) or silver-silver chloride electrodes. • A standard solution is employed to calibrate the electrode. • Zobell’s solution - solution of potassium ferric-ferro cyanide of known Eh. CONVERTING ELECTRODE READING TO Eh Once a stable potential has been obtained, the reading can be converted to Eh using the equation Ehsys = Eobs + EhZobell - EhZobell-observed Ehsys = the Eh of the water sample. Eobs = the measured potential of the water sample relative to the reference electrode. EhZobell = the theoretical Eh of the Zobell solution EhZobell = 0.428 - 0.0022 (t - 25) EhZobell-observed = the measured potential of the Zobell solution relative to the reference electrode. PROBLEMS WITH Eh MEASUREMENTS • Natural waters contain many redox couples NOT at equilibrium; it is not always clear to which couple (if any) the Eh electrode is responding. • Eh values calculated from redox couples often do not correlate with each other or directly measured Eh values. • Eh can change during sampling and measurement if caution is not exercised. • Electrode material (Pt usually used, others also used) – Many species are not electroactive (do NOT react electrode) • Many species of O, N, C, As, Se, and S are not electroactive at Pt – electrode can become poisoned by sulfide, etc. Figure 5-6 from Kehew (2001). Plot of Eh values computed from the Nernst equation vs. field-measured Eh values. Other methods of determining the redox state of natural systems • For some, we can directly measure the redox couple (such as Fe2+ and Fe3+) • Techniques to directly measure redox SPECIES: – – – – – – Amperometry (ion specific electrodes) Voltammetry Chromatography Spectrophotometry/ colorimetry EPR, NMR Synchrotron based XANES, EXAFS, etc. REDOX CLASSIFICATION OF NATURAL WATERS Oxic waters - waters that contain measurable dissolved oxygen. Suboxic waters - waters that lack measurable oxygen or sulfide, but do contain significant dissolved iron (> ~0.1 mg L-1). Reducing waters (anoxic) - waters that contain both dissolved iron and sulfide. Redox titrations • Imagine an oxic water being reduced to become an anoxic water • We can change the Eh of a solution by adding reductant or oxidant just like we can change pH by adding an acid or base • Just as pK determined which conjugate acid-base pair would buffer pH, pe determines what redox pair will buffer Eh (and thus be reduced/oxidized themselves) Redox titration II 100 -- H2S(aq) SO4 90 4 -- Some species w/ SO (umolal) • Let’s modify a bjerrum plot to reflect pe changes 80 70 60 50 -4 -2 0 2 4 pe 6 8 10 12 The Redox ladder O2 Oxic H2O NO3- Post - oxic N2 MnO2 Mn2+ Fe(OH)3 Fe2+ Sulfidic SO42H2S Methanic CO2 CH4 H2O H2 The redox-couples are shown on each stair-step, where the most energy is gained at the top step and the least at the bottom step. (Gibb’s free energy becomes more positive going down the steps)