* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Data Link Layer Switching
Airborne Networking wikipedia , lookup
Point-to-Point Protocol over Ethernet wikipedia , lookup
Dynamic Host Configuration Protocol wikipedia , lookup
Multiprotocol Label Switching wikipedia , lookup
Net neutrality law wikipedia , lookup
Deep packet inspection wikipedia , lookup
Computer network wikipedia , lookup
IEEE 802.1aq wikipedia , lookup
List of wireless community networks by region wikipedia , lookup
Piggybacking (Internet access) wikipedia , lookup
Wake-on-LAN wikipedia , lookup
Internet protocol suite wikipedia , lookup
Cracking of wireless networks wikipedia , lookup
Recursive InterNetwork Architecture (RINA) wikipedia , lookup
Internet Foreleser: Carsten Griwodz Email: [email protected] 11. Mar. 2004 1 INF-3190: Internet Address Resolution 11. Mar. 2004 2 INF-3190: Internet Address Resolution  Addressing levels Logical address e.g. www.ifi.uio.no Internet address e.g. 129.31.65.7 Address resolution Domain Name System ? Netadapter address e.g. Ethernet address 00:08:74:35:2b:0a  Host identification and routing specification within a subnetwork  based on the (local) physical network addresses of the end systems   e.g. station address of the adapter card Problem   Different address styles for different layer 2 protocols IP address must be mapped onto the physical network address, 48 bit for Ethernet   11. Mar. 2004 Direct mapping possible for IPv6 But impossible for IPv4 3 INF-3190: Internet Address Resolution: Methods  Address resolution in    Source ES, if destination ES is local (direct routing) Gateway, if destination ES is not local Solutions  Direct homogeneous Addressing  if the physical address can be changed by the user    physical address = Hostid of the IP address Only possible if physical address is also longer than hostid If the physical address is pre-defined or if it has to have a different format, one of the following has to be used  a mapping table from the configuration data base (IPaddr  HWaddr),    the Address Resolution Protocol (ARP)  11. Mar. 2004 e.g. in the Gateway, may become maintenance nightmare mainly applied in LANs with broadcasting facility 4 INF-3190: Internet Address Resolution Protocol (ARP)  Process  Broadcast ARP request datagram on LAN     Every machine on LAN receives this request and checks address Reply by sending ARP response datagram    including receiver’s IP address (desired value) sender’s physical (HW) and IP address (IP) machine which has requested address responses including the physical address Enter the pair (I,P) into buffer for future requests 11. Mar. 2004 5 INF-3190: Internet Address Resolution Protocol (ARP) H H H H H ARP Request source @IP: 9.228.50.8 @HW: 0xaa target @IP: 9.228.50.3 @IP: 9.228.50.3 @HW: @HW: 0xa3e ARP Response source @IP: 9.228.50.3 @HW: 0xa3e target @IP: 9.228.50.8 @HW: 0xaa 11. Mar. 2004 6 INF-3190: Internet Address Resolution Protocol (ARP)  Process  Broadcast ARP request datagram on LAN     Every machine on LAN receives this request and checks address Reply by sending ARP response datagram     including receiver’s IP address (desired value) sender’s physical (HW) and IP address (IP) machine which has requested address responses including the physical address Enter the pair (I,P) into buffer for future requests Refinement    The receiver of the ARP request stores the sender’s (I,P) pair in its cache Send own table during the boot process (but may be too old) Entries in ARP cache should time out after some time (few minutes) 11. Mar. 2004 7 INF-3190: Internet   2 IP addresses End system not directly 192.31.60.4 available by broadcast 192.31.65.1 192.31.65.7 192.31.65.5 Example: ES 1 to ES 4 F2 Router has  ARP would not receive a response   Ethernet broadcast is not rerouted over a router 1 2 E1 E2 CS Ethernet 192.31.65.0 F1 Router has 2 IP addresses 192.31.60.7 192.31.63.3 192.31.63.8 F3 E3 E4 Campus FDDI ring 192.31.60.0 3 4 E5 E6 Ethernet addresses EE Ethernet 192.31.63.0 Solution 1: proxy ARP  the local router knows all remote networks with their respective routers    To WAN Address Resolution Protocol (ARP) responds to local ARP local ES 1 sends data for ES 4 always to the local router, this router forwards the data (by interpreting the IP address contained in the data) Solution 2: remote network address is known   local ES 1 sends data to the appropriate remote router local router forwards packets 11. Mar. 2004 8 INF-3190: Internet Reverse Address Resolution Protocol (RARP)  Retrieve Internet address from knowledge of hardware address H H @IP: unknown @HW: 0xaa H H H RARP Request source @IP: @HW: 0xaa  RARP server responds  RARP server has to be available on the LAN  Application: diskless workstation boots over the network target @IP: @IP: 9.228.50.3 @HW: 0xa3e @HW: 0xaa RARP Response source @IP: 9.228.50.3 @HW: 0xa3e target @IP: 9.228.50.8 @HW: 0xaa 11. Mar. 2004 9 INF-3190: Internet Dynamic Host Configuration Protocol (DHCP)  DHCP has largely replaced RARP (and BOOTP)   DHCP     server answers DHCP server is used for assignment   simplifies installation and configuration of end systems allows for manual and automatic IP address assignment may provide additional configuration information (DNS server, netmask, default router, etc.) Client broadcasts DHCP DISCOVER packet   extends functionality request can be relayed by DHCP relay agent, if server on other LAN Address is assigned for limited time only   before the ’lease’ expires, client must renew it allows to reclaim addresses of disappearing hosts 11. Mar. 2004 10 INF-3190: Internet IP Routing 11. Mar. 2004 11 INF-3190: Internet IP Routing: Internal and External Routing  Direct Routing/ Interior Protocols:      N0 Both source and destination ES are located in the same subnetwork N1 source ES sends datagram to the destination ES identification done by the local address  mapping routing is completely defined by the subnetwork routing algorithm N2 N4 N5 N3 Indirect Routing/Exterior Protocols:  Source and destination ES are located on different networks    source ES sends datagram to the next router each router determines the next router on the path to the destination ES routing decision is based only on  11. Mar. 2004 the netid part of the Internet address, i.e. hostid is not used 12 INF-3190: Internet IP Routing  Routing tables Networ k 10.0.0. 0 20.0.0.5 40.0.0.7 30.0.0.6 Networ Networ Networ k k k F G H 20.0.0. 30.0.0. 40.0.0. 0 0 0 10.0.0.5 30.0.0.7 20.0.0.6 Routing table of G   To reach host Route to this on network address 20.0.0.0 Deliver direct 30.0.0.0 Deliver direct 10.0.0.0 20.0.0.5 40.0.0.0 30.0.0.7 Routers may have incomplete information Default paths 11. Mar. 2004 13 INF-3190: Internet IP Routing: Initial Gateway-to-Gateway Protocol (GGP) Original implementation ARPANET G1 Local net 1  … Local net 2 Gn Local net n Core Gateways    connect LANs to the backbone, know the routes to all networks exchange routing information with each other Gateway-to-Gateway Protocol (GGP):    G2 distributed routing definition (group "Distance-Vector-Procedure") metrics: simply by distance Problems: particularly poor scalability    several backbones not all networks are connected directly to the backbone all Gateways communicate with each other 11. Mar. 2004 14 INF-3190: Internet IP Routing: Autonomous Systems  Hidden networks Core gateways AS boundary router G1 Local net 1 G2 Local net 2   Autonomous System G3 Local net 3 G4 Local net 4 Core gateways have to be informed about hidden networks Autonomous systems (AS)  Internet domains 11. Mar. 2004 15 INF-3190: Internet IP Routing: Autonomous Systems  Types of ASs  Stub domains   G1 Autonomous system interconnect domain Gi G2 Autonomous system … Gn Autonomous system Autonomous systems are administrative entities   Collects routing information on networks in the AS Defines boundary routers (also called Exterior Gateways)   No through traffic Transit domains   source & sink only Multiconnected domain   Core gateways that transmit routing information to other autonomous sys. Boundary routers   Transmits information about network reachability only into its own AS Reason: each AS shall control exactly, to whom the information about reachability is given to 11. Mar. 2004 16 INF-3190: Internet Interior Gateway Protocol IGPx Autonomous System x IGPx   EGP    Other variants  individual solutions possible  e.g. HELLO by Dave Mills distributed routing algorithm  Routing Information Protocol (RIP), old Open Shortest Path First (OSPF) Interior Gateway Routing Protocol (IGRP) and Enhanced IGRP (EIGRP) 11. Mar. 2004 Autonomous System 1 IGP1 Presently preferred procedures  G1 Gx In general: intradomain routing  IGP1  17 distance: Delay requires synchronized clocks INF-3190: Internet Routing Information Protocol (RIP)  Background (regarding the originally used protocol)    Principle   developed as a part of Berkeley UNIX since 1988, RIP Version 1, RFC 1058 i.e.  Distributed routing algorithm: Distance-Vector-Procedure IS periodically sends a list containing estimated distances to each destination to its neighbors  distance   periodical   number of hops: 0 .. 15 (15 corresponds to infinite) every 30 sec; after 180 sek without packet  distance infinite RIP Version 2  G. Malkin, RFC 1387, 1388 and 1389 (RIP-MIB)    Uses multicast if necessary to distribute data Not broadcast (so that all ES also receive this) Networks without broadcast or multicast (ISDN, ATM)   11. Mar. 2004 “Triggered" updates To be sent only if the routing table changes 18 INF-3190: Internet Open Shortest Path First (OSPF)  Background: since 1990 Internet Standard, RFCs 1247, 2178   Transition from vector-distance to link-state-protocol Principle (link-state-protocol)  IS measures "distance" to the immediately adjacent IS, distributes the information, calculates the optimal route   determine the address of adjacent IS measure the "distance" (delay, ..) to adjacent IS   OSPF permits differing metrics selection per packet possible (RFC 1349) OSPF no. 0 2 4 8 16    11. Mar. 2004 Meaning Normal service Minimize financial cost Maximize reliability Maximize throughput Minimize delay process local link-state information as a packet distribute information to all adjacent IS by flooding compute route from the information of all IS e.g. with Dijkstra’s "shortest path first" algorithm  name "Open Shortest Path First“ 19 INF-3190: Internet Open Shortest Path First (OSPF)   For large autonomous systems AS substructure     To other AS AS AS backbone area Area Router classes     AS boundary routers Backbone routers Area border routers Internal routers 11. Mar. 2004 To other AS 20 INF-3190: Internet Open Shortest Path First (OSPF)  Adjacency   LSR measures distance to all neighbours OSPF measures distance to all adjacent nodes If several routers are connected by a LAN     One is designated router All other routers on the LAN are adjacent only to it It is adjacent to all others H D E B A C H D G I F transform to graph E B A C G I F F LAN N LAN are represented as star configurations 11. Mar. 2004 21 INF-3190: Internet Exterior Gateway Protocol: Circumstances  Requirements, basic conditions    Core gateways political economical security-related AS1  Requirement examples      to avoid certain autonomous systems to avoid certain countries to stay within one country (before going via foreign country) data of company A should not to pass through company B AS3 IG1 AS2 NW IG2 Exchange information on accessibility   including at least one Core Gateway possibly with other AS 11. Mar. 2004 23 INF-3190: Internet Exterior Gateway Protocol Border Gateway Protocol (BGP)    Previously: Internet Exterior Gateway Protocol (RFC 1654) Now: Border Gateway Protocol (RFC 1771, 1772, 1773) is de-facto standard Configurations   Possibility to have several Exterior Gateways per AS Variations  Branch (topology):   Multiconnected networks     Demands  networks with increased capacity and often linked to many AS To allow for routing path decisions    linked to many end systems can pass on traffic if necessary Transit networks   all of the external traffic is routed over this/a single, external router e.g. to prefer to send traffic via own country e.g. not to send traffic through certain companies Routing policy can not only be based on a "minimal distance" 11. Mar. 2004 24 INF-3190: Internet Exterior Gateway Protocol Border Gateway Protocol (BGP)  Algorithm  Fundamentals: based on distance vector mechanism, where  IS sends periodically to its neighbours a list containing   the estimated distances from itself to all known destinations BGP uses distance path mechanism  Related to distance vector   IS sends periodically a list to its neighbours containing   But without count-to-infinity problem estimated distance and preferred Path from itself to each destination for a specified block of reachable IP addresses Receiving IS evaluates path   Distance Policy compliance  notion of a path / of how to reach other routers is distributed  but, no criteria for selecting a route is distributed  each BGP router must have its own criteria, i.e. policy   Remarks   e.g. never send using certain AS Big updates But only a limited number of routers 11. Mar. 2004 25 INF-3190: Internet Protocol Support in an IP Router BGP Network layer protocols  IP (Internet Protocol) ARP (Address Resolution Protocol), RARP (Reverse ARP) ICMP (Internet Control Message Protocol) IGMP (Internet Group Management Protocol)      ICMP IGMP RIP TCP SNMP UDP EGP OSPF IP ARP RARP SNAP LLC-1  Routing protocols       RIP (Routing Information Protocol) BGP (Border Gateway Protocol) EGP (Exterior Gateway Protocol) OSPF (Open Shortest Path First)  Transport protocols    Network management protocols and   11. Mar. 2004 26 SNMP (Simple Network Management Protocol) UDP (User Datagram Protocol) TCP (Transmission Control Protocol) SNAP (Subnet Access Point) LLC (Logical Link Control) INF-3190: Internet