Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Optical Transport Network & Optical Transport Module "Digital Wrapper" Maarten Vissers Consulting Member of Technical Staff Lucent Technologies email: [email protected] April 2002 Contents OTN Rationale OTN Layer Networks Multi level Connection Monitoring OTM Signals Maintenance Signals Mapping Client Signals Multiplexing Virtual Concatenation OTN Standards April 2002 2 Contents OTN Rationale OTN Characteristics OTN Layer Networks Transitional Approaches Multi level Connection Monitoring Final Phase O/E/O processing objectives Digital processing objectives OTM Signals Maintenance Signals Mapping Client Signals Multiplexing Virtual Concatenation OTN Standards April 2002 3 OTN Characteristics New transport networking layer (carrier grade solution) • Next step (after SDH/SONET) to support ever growing data driven needs for bandwidth and emergence of new broadband services – Terrabit/second per fiber via DWDM lines (transport level) – Gigabit/second paths at 2.5 Gb/s, 10 Gb/s, 40 Gb/s (networking level) • Service transparency for SDH/SONET, ETHERNET, ATM, IP, MPLS – No change of SDH/SONET! – One exception; interpretation of STM-LOF alarm + STMAIS due to OTN fail • Enhanced OAM & networking functionality for all services • Shortest physical layer stack for data services (IP OTN Fiber) April 2002 4 OTN Characteristics Gigabit level bandwidth granularity required to scale and manage multi-Terabit networks • Wavelength level switching maximizes nodal switching capacity, the gating factor for reconfigurable network capacity • Avoids very large numbers of fine granularity pipes that stress network planning, administration, survivability, and management April 2002 5 Transitional Approaches - Assessment Extended SDH (attempt at creating a new layer using SDH elements) • Bandwidth multiplication by means of TDM more Gigabit/s on fiber (4x) • Proprietary approaches attempting to carry lower rate STM-N [including all overhead] as a “service” within a higher rate STM-M (M>N) – strongly limited: SDH multiplexing hierarchy not designed to carry the STM-N (i.e. “itself”) as a service No timing transparency 90% of STM-N/OC-N overhead bytes not passed through No STM-N/OC-N independent monitoring – Multiple proprietary implementations created in industry no interworking April 2002 6 Transitional Approaches - Assessment Pre-OTN WDM (simple transport - vs. networking - solution) • Bandwidth multiplication by means of WDM Terabit/s on fiber (100x) • Client signal (e.g. STM-N, GbE) direct on wavelength – simple transport, no monitoring – or client specific non-intrusive monitoring per client type a monitor is needed additional client type implies additional monitor to be added – alarm suppression signal (e.g. AIS) specific per client type additional client type implies additional alarm suppression signal to be added • Point-to-point application that can transport STM-N/OC-N as a service April 2002 7 Final Phase OTN (networking solution) • Management enabler of WDM network by means of addition of: – Overhead to "" and "multi-" signals "non-associated" or "out-of-channel" overhead; e.g. preventing alarm storms – Optical Channel (OCh) layer STM-N, IP, ATM and Ethernet signals mapped ("wrapped") into OCh frame (OCh Data Unit (ODUk)) • First transmission technology in which each stakeholder gets its own (ODUk) connection monitoring • In addition ODUk supports/provides: – STM-N independent monitoring, becoming a service signal "itself", shortest physical layer stack for data services, TDM muxing, STMN inverse multiplexing, client independent protection switching, plesiochronous timing (no sync network required) April 2002 8 O/E/O Objectives Minimise O/E/O processing in OTN • O/E/O processing at edges of administrative/vendor (sub)domains – Span engineering • O/E/O processing at edges of protected or switched domain – Span engineering (short/long route effects) – Signal Fail & Signal Degrade condition determination If more than 1 optical transparent subnetwork is included • O/E/O processing at intermediate points – Span engineering (long line sections) – Losses in optical fabrics • O/E & E/O processing around electrical fabric April 2002 9 Digital Processing Objectives Digital processing at locations where O/E/O is already performed • Fault and degradation detection • Service Level Agreement (SLA) verification • Signal Fail & Signal Degrade condition determination for protection and restoration (e.g. if high accuracy is required) April 2002 10 Contents OTN Rationale OTN Layer Networks Layer Networks Multi level Connection Monitoring Client Signals Optical Channel Structure OTM Signals Containment Relationships Maintenance Signals Mapping Client Signals Example of Layer Network Trails Multiplexing OTN Interfaces Virtual Concatenation OTN Standards Standardised and "Proprietary" Stacks April 2002 11 OTN Layer Networks & Client Signals Three new layer networks: IP/MPLS ATM • one "Gbit/s" path • • 12 layer – OCh two section layers – OMSn – OTSn single channel section layer: – OPS0 Client signals: • IP/MPLS • ATM • Ethernet • STM-N ETHERNET STM-N Optical Channel (OCh) layer network Interworking with pre-OTN STM-N GbE Optical Multiplex Section (OMSn) layer network OTM Physical Section (OPSn) Optical Transmission Section (OTSn) layer network OTM-0 OTM-nr, n>1 Optical Transport Module of order n (OTM-n, n1) April 2002 Optical Channel Structure 13 Multiplexing (TDM) • ODUk multiplexing ODUk virtual concatenation Optical Channel Payload Unit (OPUk) Optical Channel Data Unit (ODUk) ODUk CF OPUm (m>k) ODUm (m>k) Optical Channel Transport Unit (OTUk, OTUkV) GbE • – OCh Data Unit (ODUk) – OCh Payload Unit (OPUk, k=1,2,3) – OCh Transport Unit (OTUk, OTUkV) Analogue: OCh IP ATM ETHERNET STM-N STM-N Optical Channel layer network consists of 3+1 structures: • Digital: TDM Optical Channel (OCh) OCh CF CF: Connection Function April 2002 OTN Containment Relationships Non-associated overhead Associated overhead Wrapper Client OH OH OH OCh Payload Unit (OPUk) Client OCh Data Unit (ODUk) OPUk ODUk FEC Optical Channel (OCh) OTUk OH OCC OH OCC OCh Transport Unit (OTUk) Optical Channel Carrier (OCC) OCC OPS0 Optical Multiplex Section Optical Transmission Section OH OTM Overhead Signal OOS OSC OSC Optical Supervisory Channel Optical Transport Module Optical Physical Section April 2002 14 OTN Layer Network Trails Example of OTSn, OMSn, OCh, OTUk, ODUk, OPS0 trails • Transport of STM-N signal via OTM-0, OTM-n and STM-N lines STM-N ODUk OMSn OTSn OTSn 3R LT OTM-n Client OTM-0 OPS0 DXC 3R OCh, OTUk R OCh, OTUk OMSn OTSn OTSn OMSn OTSn OCADM 3R R ODXC LT OSn 3R STM-N OCh, OTUk DXC Client LT Line Terminal w/ optical channel multiplexing OCADM Optical Channel Add/Drop Multiplexer ODXC ODU Cross-Connect 3R O/E/O w/ Reamplification, Reshaping & Retiming and monitoring R Repeater April 2002 15 OTN Interfaces User to Network Interface (UNI) Network Node Interface (NNI) • Inter Domain Interface (IrDI) • Intra Domain Interface (IaDI) between equipment of different vendors (IrVI) within subnetwork of one vendor (IaVI) Network Operator B USER A OTM UNI Network Operator C OTM NNI IaDI-IrVI OTM NNI IaDI-IaVI Vendor X OTM NNI IaDI-IaVI OTM NNI IrDI Vendor Y April 2002 16 Standardised & "Proprietary" stacks Proprietary elements: wavelengths • bit rates of wavelengths • supervisory channel OPUk ODUkP ODUk ODUkT OTUkV • FEC • frame format • ODUk mapping used between (and within) OTN transparent subnetworks used within OTN transparent subnetworks; implementations are very much technology dependent 17 OTUk OTUkV OCh OTUk OTUkV substructure OTM-n.m • optical parameters • number of OCh Clients (e.g. STM-N, ATM, IP, Ethernet) OChr OMSn OPSn OTSn OTM-n.m Full functionality Reduced functionality OTM-0.m OTM-nr.m April 2002 Contents OTN Rationale OTN Layer Networks Multi level Connection Monitoring Application OTM Signals Nesting Maintenance Signals Overlapping Mapping Client Signals Multiplexing Virtual Concatenation OTN Standards April 2002 18 Multi-level Connection Monitoring: Applications Status working [protection] isbymonitored for ODUk switched circuit: UNI-UNI CM QoS QoSprovided of ofofclient provided signal by leased leased transport circuit circuit isconnection is is monitored monitored monitored by byUser User Service Network Provider Operator to initiate "connection re-establishment" SF and SD switch conditions Path CM Client Signal Verify QoS CM USR2 NO A UNI-UNI CM NO B NNI-NNI CM ODUk NO C Working W/P CM USR1 ODUk Protection Client Signal April 2002 19 Multi-level Connection Monitoring: Nesting TCM6 TCM6 TCM6 TCM6 TCM6 TCM6 TCM6 TCM5 TCM5 TCM5 TCM5 TCM5 TCM5 TCM5 TCM4 TCM4 TCM4 TCM4 TCM4 TCM4 TCM4 TCM3 TCM3 TCM3 TCM3 TCM3 TCM3 TCM3 TCM2 TCM2 TCM2 TCM2 TCM2 TCM2 TCM2 TCM1 TCM1 TCM1 TCM1 TCM1 TCM1 TCM1 A1 B1 C1 C2 B2 B3 B4 A2 C1 - C2 B1 - B2 B3 - B4 A1 - A2 TCMi TCM OH field not in use TCMi TCM OH field in use April 2002 20 Multi-level Connection Monitoring: Nesting and Overlapping TCM6 TCM6 TCM6 TCM6 TCM6 TCM5 TCM5 TCM5 TCM5 TCM5 TCM4 TCM4 TCM4 TCM4 TCM4 TCM3 TCM3 TCM3 TCM3 TCM3 TCM2 TCM2 TCM2 TCM2 TCM2 TCM1 TCM1 TCM1 TCM1 TCM1 A1 B1 C1 B2 C2 A2 C1 - C2 B1 - B2 A1 - A2 TCMi TCM OH field not in use TCMi TCM OH field in use April 2002 21 Contents OTN Rationale OTM Interface Signals • OTM-16r.m • OTM-0.m • OTM-n.m OTN Layer Networks Multi level Connection Monitoring OTM Signals OTM Signals versus OTN I/F Maintenance Signals OTM Overhead Signal Mapping Client Signals Multiplexing Frame Formats • OTUk, ODUk Virtual Concatenation Overhead • OTUk, ODUk OTN Standards OTUkV Overhead versus OTN I/F April 2002 22 OTM-16r.m Signal (m=1,2,3,12,23,123) 16 17 O Fr a TU m k, eA O OD lig ve U n rh k & me ea n d OP t , Uk 2 3 4 1 2 3 4 1 2 3 4 1 1 2 3 4 2 3 4 4080 OTUk FEC (4 x 256 bytes) 3824 3825 Payload (4 x 3808 bytes) 16 17 1 1 3824 3825 16 17 O Fr a TU m k, eA O OD lig ve U n rh k & me ea n d OP t , Uk 1 4080 OTUk FEC (4 x 256 bytes) Payload (4 x 3808 bytes) O Fr a TU m k, eA O OD lig ve U n rh k & me ea n d OP t Uk 16 17 O Fr a TU m k, eA O OD lig ve U n rh k & me ea n d OP t , Uk 1 3824 3825 Payload (4 x 3808 bytes) 4080 OTUk FEC (4 x 256 bytes) 3824 3825 Payload (4 x 3808 bytes) 16 17 4080 OTUk FEC (4 x 256 bytes) 3824 3825 Payload (4 x 3808 bytes) 4080 OTUk FEC (4 x 256 bytes) Up to 16 wavelengths carrying traffic, with fixed 200 GHz grid independent of bit rate (2G5, 10G, 40G) Optical parameters according to ITU-T Recommendation G.959.1 Bit rate and format of the associated overhead according to ITU-T Recommendation G.709 No Optical Supervisory Channel (OSC) • non-associated overhead not required; i.e. 3R points at each end, no repeaters 23 1 1 O Fr a TU m k, eA O OD lig ve U n rh k & me ea n d OP t , Uk OTM-16r.m April 2002 1 1 2 3 4 16 17 O Fr a TU m k, eA O OD lig ve U n rh k & me ea O n d P t, Uk OTM-0.m OTM-0.m Signal (m=1,2,3) 3824 3825 Payload (4 x 3808 bytes) 4080 OTUk FEC (4 x 256 bytes) Single channel signal ("colourless": 1310 or 1550 nm) Optical parameters according to ITU-T Recommendation G.959.1 Bit rate and format of the associated overhead according to ITUT Recommendation G.709 No Optical Supervisory Channel (OSC) • non-associated overhead not required; i.e. 3R points at each end, no repeaters April 2002 24 OTM-n.m Signal (m=1,2,3,12,23,123) OTM-n.m 2 3 4 O Fr a TU m k, eA O O D lign ve Uk m rh & en ea O t d P , Uk 2 3 O Fr a TU m k, eA O O D lign ve Uk m rh & en ea O t d P , Uk 2 3 4 O Fr a TU m k, eA O O D lign ve Uk m rh & en ea O t d P Uk 2 3 4 2 3 4 4080 3824 3825 OTUk FEC (4 x 256 bytes) 3824 3825 4080 OTUk FEC (4 x 256 bytes) Payload (4 x 3808 bytes) 4080 3824 3825 16 17 1 1 OTUk FEC (4 x 256 bytes) Payload (4 x 3808 bytes) 16 17 1 1 4080 3824 3825 Payload (4 x 3808 bytes) 16 17 1 1 O Fr a TU m k, eA O O D lign ve Uk m rh & en ea O t d P , Uk 3 4 OTUk FEC (4 x 256 bytes) Payload (4 x 3808 bytes) 16 17 1 1 4080 3824 3825 16 17 1 1 O Fr a TU m k, eA O O D lign ve Uk m rh & en ea O t d P , Uk n Payload (4 x 3808 bytes) OTUk FEC (4 x 256 bytes) OSC OTM Overhead Signal (OOS) Up to "n" wavelengths carrying traffic, with a grid dependent on bit rate 1 "out-of-band" Optical Supervisory Channel (OSC) transporting the OTM Overhead Signal (OOS) OTM Overhead Signal transports OTS, OMS, OCh (nonassociated) overhead and General management communications April 2002 25 OTM Signals versus OTN Interfaces OTM-n.m OTM-16r.m OTM-0.m - X (Note 1,2) X (Note 1,2) - X (Note 1,3) X (Note 1,3) IrVI - X (Note 1,4) X (Note 1,4) IaVI X X X UNI NNI IrDI IaDI Note 1 - These interfaces require an OTUk to be present. Note 2 - A restricted set of ODUk overhead is transparently transported through the network. This is subject of regulations. Note 3 - A restricted set of ODUk overhead is transparently transported through the network(s) of the downstream operator(s). This is subject of regulations. Note 4 - A restricted set of ODUk overhead is transparently transported through the downstream subnetwork(s) with equipment of (an)other vendor(s). Note 5 - Other OTM interfaces may be added in future versions of G.709. April 2002 26 OTM Overhead Signal (OOS) «Non-associated overhead» OOS functions subject to standardization OOS bit rate & format not standardized OCh OH extensions may be expected in future to support e.g. OCh protection (e.g. OCh SPring) n FDI-P TTI 3 2 1 BDI-O FDI-O BDI-P BDI-P FDI-P PMI PMI OCh BDI-O OMSn OTSn Non-Associated overhead FDI-O Vendor Specific OCI General Management Communications BDI: Backward Defect Indication FDI-O: Forward Defect Indication - Overhead FDI-P: Forward Defect Indication - Payload OCI: Open Connection Indication PMI: Payload Missing Indication TTI: Trail Trace Identifier April 2002 27 OTUk OH 2 3 ODUk OPUk OH Client Signal mapped in OPU k Payload OPUk Payload 4080 3825 3824 14 15 16 17 7 8 1 1 Alignm OTUk FEC 4 Client Signal OPUk - Optical Channel Payload Unit ODUk - Optical Channel Data Unit k indicates the order: 1 2.5G OTUk - Optical Channel Transport Unit 2 10G 3 40G Alignment April 2002 28 OTUk bit rate: 255/(239-k) * "STM-N" ODUk bit rate: 239/(239-k) * "STM-N" OTUk and ODUk frame formats (k=1,2,3) OTUk and ODUk Overhead (k=1,2,3) «Associated overhead» Column 2 3 4 OTUk FRAME ALIGNMENT MFAS AlignmFAS OVERHEAD AREA OH TCM TCM6 RES ACT TCM3 GCC1 ODUk GCC2 OPUk OH 1 7 8 14 OTUk AREA SMSPECIFIC OVERHEAD GCC0 RES TCM5 TCM4 OPU k Payload TCM2 ODUk SPECIFIC TCM1OVERHEAD AREA PM APS/PCC 15 16 OPUk SPECIFIC OVERHEAD AREA 1 Row RES JC Mapping JC & Concat FTFL RES Specific EXP RES JC RES PSI NJO PJO BDI BDI BDI IAE TCMi PM TCMi ACT: Activation/deactivation control channel MFAS: MultiFrame Alignment Signal 1 3 0 1 9 10 127 128 2 129 138 APS: Automatic Protection Swiching PCC: Protection137 Communication Control channel255 1 2 3 4 8 1 5 6 7 8 1 2 3 4 2 5 6 7 8 1 2 3 4 3 5 0 6 7 PT 1 2 Operator channel Operator coordination PM: Path Monitoring 3 Operator Operator Specific Specific FTFL 1 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6Identifier 7 8 1 2 3 4 5 6 Identifier 1 2 3 4 5 TTI 6 7 8 1 2 3 4 PSI: 5BIP-8 6 Payload 7 8 1Structure 2 3 BEI 4Identifier 5 6 7 STAT 8 EXP: Experimental Mapping BIP-8 RES FAS:FaultFrame Alignment Signal RES: forBEI/BIAE future international & Concat TTITTI BIP-8 Fault ReservedBEI/BIAE Forward Backward STAT FTFL: Fault Type & Fault Location Indication Indicationstandardisation 255 Specific Field reporting Field Section Monitoring channel 0 15 16 31SM: 32 63 GCC: GeneralSource Communication Access Channel Destination Access TCM: Tandem Connection Monitoring Operator Specific TTI Point Identifier Point Identifier April 2002 29 OTUkV (k=1,2,3) Frame format is vendor specific Forward Error Correction code is vendor specific Minimum overhead set to support is: • Trail Trace Identifier • Error Detection Code (e.g. BIP) • Backward Defect Indicator • Backward Error Indicator • (Backward) Incoming Alignment Error Other overhead is vendor specific ODUk mapping into OTUkV is vendor specific April 2002 30 Overhead versus OTN Interfaces OTM Interface Ports on IP Router, ATM Switch, Ethernet Switch and SDH equipment should support the following minimum set of overhead • OPUk Client Specific • OPUk Payload Structure Identifier (PSI) • ODUk Path Monitoring (PM) • OTUk Section Monitoring (SM) • Frame Alignment (FAS, MFAS) 1 3 4 FAS 5 6 7 MFAS 8 9 10 11 12 13 14 15 16 SM PM 3 OPUk Payload Client Specific 2 OTUk FEC 1 2 PSI 4 all-0's pattern April 2002 31 Overhead versus OTN Interfaces USER A Overhead passed through network • OTM UNI to OTM UNI • OTM NNI IrDI to OTM NNI IrDI OTM UNI Network Operator K OTM NNI IrDI Network Operator L OTM NNI IrDI Network Operator M OTM UNI User Z April 2002 32 Overhead versus OTN Interfaces Overhead passed through network from OTM UNI to OTM UNI interface • OPUk PSI, Client Specific • ODUk PM, TCM ACT, TCM1..TCMn, TCM ACT, RES • ODUk GCC1, GCC2 according contract • ODUk APS/PCC definition is under study 1 2 4 5 6 RES 3 TCM3 GCC1 8 9 SM MFAS TCM ACT TCM6 TCM2 GCC2 10 11 GCC0 TCM5 TCM1 APS/PCC 12 TCM4 PM RES passed through terminated and re-inserted based on contract may be overwritten in network 13 14 15 16 RES FTFL Client Specific EXP OPUk Payload 2 7 OTUk FEC FAS 1 4 3 PSI based on regulations and contract TCM1..TCMn are passed through, TCMn+1..TCM6 may be overwritten definition is under study April 2002 33 Overhead versus OTN Interfaces Overhead passed through network from OTM NNI IrDI to OTM NNI IrDI interface • OPUk PSI, Client Specific • ODUk PM, TCM ACT, TCM1..TCMm, TCM ACT, FTFL, RES – "m" in TCMm > "n" in TCMn (UNI-UNI) • ODUk GCC1, GCC2 according contract • ODUk APS/PCC definition is under study 1 2 4 5 6 RES 3 TCM3 GCC1 8 9 SM MFAS TCM ACT TCM6 TCM2 GCC2 10 11 GCC0 TCM5 TCM1 APS/PCC 12 TCM4 PM RES passed through terminated and re-inserted based on contract may be overwritten in network 13 14 15 16 RES FTFL Client Specific EXP OPUk Payload 2 7 OTUk FEC FAS 1 4 3 PSI based on regulations and contract TCM1..TCMm are passed through, TCMm+1..TCM6 may be overwritten definition is under study April 2002 34 Contents OTN Rationale OTN Layer Networks Multi level Connection Monitoring OTM Signals Maintenance Signals Mapping Client Signals Multiplexing Virtual Concatenation OTN Standards Forward Defect Indication (FDI, AIS) Backward Defect & Error Indication (BDI, BEI) Open Connection Indication (OCI) Locked (LCK) Fault Type & Fault Location (FTFL) April 2002 35 OTN Maintenance Signals: Alarm Suppression R use of OTN maintenance signals FDI, AIS and PMI will reduce number of alarms from 500k to 1 per broken fiber R R use of OTN maintenance signal OTS-PMI (and OMS-PMI) will prevent OTS [OMS] LOS alarm when none ofs is presentOCh-FDI OMS-FDI OCh-FDI at line termination point OMS-FDI is converted into OCH-FDI at 3R point OCh-FDI is converted into ODUk-AIS OCh-FDI 3R R OTS-PMI OTS-PMI 1000 /fiber x 96 fibers/cable OCh-FDI x 5 cables/duct = 500k lost signals ==> 500k LOS alarms in network 36 R April 2002 OCh-FDI OCh OMSn-FDI OTSn OCh-FDI OCh OMSn AIS/FDI at • clients AIS at • ODUk AIS at • OTUk FDI at • OCh FDI/PMI at • OMSn PMI at • OTSn ? Ethernet MPLS-FDI MPLS OCh-FDI OCh ODUk-AIS ? IP OTSn-PMI OCh-FDI OCh-FDI OCh OMSn-PMI OCh VP-AIS ATM OCh-FDI ODUk-AIS gen-AIS OCh OTUk-AIS Future server layer OTUk ODUk CBR (STM-N) OTN Maintenance Signals: Alarm Suppression (FDI, AIS) April 2002 37 OTN Maintenance Signals: Alarm Suppression (FDI, AIS) Generated at egress of OMSn, OCh and ODUk Link Connections Inserted on detection of Signal Fail OMSn-FDI and OCh-FDI • is non-associated overhead ODUk-AIS • is special ODUk signal pattern (0xFF) 17 3824 STAT FTFL OTUk OH STAT 3 STAT 2 14 STAT STAT FA OH STAT 1 78 STAT 1 All-1's pattern 4 April 2002 38 Generic-AIS [STM-AIS] New maintenance signal @ STM-N level • a continuous repeating 2047-bit PN-11 (1 + x9 + x11) sequence Generated in OTN tributary ports • ingress trib: on detection of STM-N LOS • egress trib: on detection of ODUk signal fail type defect To be detected in SDH line/trib ports in addition to STM-LOF as "STM-AIS" • In existing equipment detected as STM-LOF insertion OTN with SDH trib SDH STM OOF/IF dLOF STM-N STM framer dAIS ODUk OTM-n ODUk gen. AIS gen. AIS SDH STM-N LOS LOS STM-N descr gen. AIS detection OTN with SDH trib ODUk OTM-n ODUk gen. AIS descr framer STM-N STM dLOF STM dAIS OOF/IF April 2002 39 OMSn-BDI-P OMSn-BDI-O OMSn OTSn-BDI-P OTSn-BDI-O OTSn RDI/REI at • Clients BDI/BEI at • ODUk • OTUk No BI at • OCh BDI at • OTSn • OMSn OCh ? OCh BDI Ethernet MPLS IP ? OCh OCh RDI REI OCh ATM OTUk-BDI OTUk-BEI OCh ODUk-BDI ODUk-BEI Future server layer ODUk RDI REI OTUk CBR (STM-N) OTN Maintenance Signals: Backward Information (BDI, BEI) April 2002 40 OTN Maintenance Signals: Open Connection Indication (OCI) Generated in a Fabric Inserted when output port is not connected to input port OCh-OCI • is non-associated overhead ODUk-OCI • special ODUk signal pattern (0x66) 17 3824 STAT OTUk OH STAT 3 STAT 2 14 STAT STAT FA OH STAT 1 78 STAT 1 Repeating "0110 0110" pattern 4 April 2002 41 OTN Maintenance Signals: Locked (LCK) Generated in ODUk Tandem Connection endpoint Inserted when Administrative State is Locked • to block a user to access the connection • to prevent test patterns within the network entering a user domain ODUk-LCK • special ODUk signal pattern (0x55) 17 3824 STAT OTUk OH STAT 3 STAT 2 14 STAT STAT FA OH STAT 1 78 STAT 1 Repeating "0101 0101" pattern 4 April 2002 42 Fault Type & Fault Location (FTFL) Helps Service Provider to automatically locate fault/degradation to specific Network Operator domain No need to call around any longer Section and Tandem Connection endpoints insert FTFL in forward direction on detection of SF or SD condition Specific FTFL function at UNI • extracts forward info and sends it in opposite direction as backward info • filters outgoing and incoming FTFL information (security issue) Specific FTFL extraction function • reads FTFL forward and backward information at intermediate point along ODUk Path Termination X:SP NO D A:X B:X IrDI IrDI IrDI NO B IrDI IrDI NO C SP:X 43 NO A X:A CUSTOMER IrDI connection CPE1 B:X ODUk UNI Tandem Connection Termination ODUk Tandem Connection Termination OTUk Section Termination Equipment April 2002 Contents OTN Rationale OTN Layer Networks Multi level Connection Monitoring OTM Signals Maintenance Signals Mapping Client Signals Multiplexing Virtual Concatenation OTN Standards CBR (e.g. STM-N) IP, ETHERNET ATM Test Signals Bit stream with/without octet timing Bit Rate Agnostic CBR April 2002 44 4 1 2 3 4 3824 D 3805D D 3824 D 1921 3805D 1920 DD 1904 1905 D 118 x 16D 16FS 119 x 16D 118 x 16D 16FS 119 x 16D 118 x 16D 16FS 119 x 16D 16FS 119 x 16D 15D + 117 x 16D 3824 3 3805D 2560 2561 2 DD 2544 2545 1 D 1280 1281 4 3805D 1264 1265 3 PSI RES RES RES 15 NJO JC JC JC 16 PJO 17 18 2 DD PSI RES RES RES 15 NJO JC JC JC 16 PJO 17 demapper, and • bit synchronous mapping has fixed Justification Control (JC) 1 PSI RES RES RES 15 NJO JC JC JC 16 PJO 17 G.709 defines interworking between both mappings • common STM-64 G.709 provides two mappings for STM-N signals • bit synchronous • asynchronous STM-256 STM-16 Mapping STM-N (N=16,64,256) 78 x 16D 16FS 79 x 16D 16FS 79 x 16D 78 x 16D 16FS 79 x 16D 16FS 79 x 16D 78 x 16D 16FS 79 x 16D 16FS 79 x 16D 16FS 79 x 16D 16FS 79 x 16D 15D + 77 x 16D D: Data, FS: Fixed Stuff, JC: Justification Control, N/PJO: Negative/Positive JustificationApril Opportunity 2002 45 Mapping IP and Ethernet G.709 provides an encapsulation for packet based client signals There is no need for SDH or 10G-Ethernet to encapsulate IP A new protocol is being defined: Generic Framing Procedure • a generic mechanism to carry any packet signal over fixed rate channels (e.g. SDH, SONET and OTN's ODUk) - ITU-T Rec. G.gfp 15 16 17 2 3 4 PSI RES RES RES RES RES RES RES 1 3824 OPUk Payload OPUk Overhead 0 1 PSI 255 PT GFP Frame GFP Idle Frame RES 4 4-65535 bytes 4 bytes Bandwidth for GFP stream in ODU1: 2 488 320 kbit/s ODU2: 9 995 276 kbit/s ODU3: 40 150 519 kbit/s April 2002 46 Generic Framing Procedure G.7041 2 1 2 3 1 Core Header 3 4 PLI PLI cHEC cHEC 5 <15:08> 6 <07:00> 7 <15:08> 8 <07:00> <15:08> <07:00> <15:08> <07:00> 5 5 6 6 1 2 3 4 5 6 7 8 7 7 5 8 Payload Area Payload Header GFP Frame Bit Octet 1 2 3 4 5 6 7 8 4 GFP Idle 47 X+4 eHEC eHEC N-3 N-2 N-1 N pFCS pFCS pFCS pFCS <31:24> <23:16> <15:08> <07:00> UPI <15:08> 1 2 3 4 5 6 7 8 <07:00> 9 4 X 64 optional Payload FCS 3 00 (B6) hex 00 (AB) hex 00 (31) hex 00 (E0) hex X+3 EXI <07:00> Extension Header Payload Information Field PTI <15:08> N 65536 2 6 10 X+5 N TYPE TYPE tHEC tHEC 9 X+4 1 5 1 2 3 4 5 6 7 8 4 8 TYPE TYPE tHEC tHEC Null Header Bit Octet 1 2 3 4 5 6 7 8 PFI 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 11 12 <07:00> CID Spare <07:00> eHEC <15:08> eHEC <07:00> Linear with Frame Multiplexing <15:08> <07:00> CID: Channel ID EXI: Extension Header ID FCS: Frame Check Seq HEC: Header Error Check PFI: Payload FCS Ind PLI: Payload Length Ind PTI: Payload Type ID UPI: User Payload ID April 2002 Mapping ATM G.709 provides a mapping for cell based client signals Mapping ATM into ODUk is similar to mapping into SDH 15 16 17 2 3 4 PSI RES RES RES RES RES RES RES 1 3824 OPUk Payload OPUk Overhead 0 1 PSI 255 PT ATM cell RES 53 bytes Bandwidth for ATM stream in ODU1: 2 488 320 kbit/s ODU2: 9 995 276 kbit/s ODU3: 40 150 519 kbit/s April 2002 48 Mapping Test Signals G.709 provides a mapping for test signals Two test signals are defined • NULL sequence (all-0's) Column 15 Row 16 17 18 3824 1 RES RES 2 RES RES All-0's pattern 3 RES RES 4 PSI RES OPUk OH OPUk Payload (4 x 3808 bytes) 0 1 PSI T1542830-00 (114739) PT RES 255 April 2002 49 Mapping Test Signals Two test signals are defined (continued) • 2 147 483 647-bit Pseudo Random Binary Sequence (PRBS) 1 + x28 + x31 2 3 4 PSI RES RES RES 15 RES RES RES RES 16 17 18 1 3824 – groups of 8 successive PRBS bits are mapped into a data byte DD 3805x D D DD 3805x D D DD 3805x D D DD 3805x D D OPUk Payload (4 x 3808 bytes) OPUk OH 0 1 PSI PT RES 255 April 2002 50 Mapping bit stream with[out] octet timing G.709 provides a generic mapping for client signals encapsulated into a bit stream, with or without octet timing A regional standards organisation or an industry forum may deploy this mapping for a new client signal It must also define the OPUk Client Specific (CS) overhead Column Row 15 16 17 18 3824 1 CS CS 2 CS CS 3 CS CS 4 PSI CS OPUk Payload (4 x 3808 bytes) OPUk OH 0 1 PSI PT RES CS: Client Specific overhead 255 51 April 2002 Bit Rate Agnostic CBR Mapping New mapping method which maps a CBR signal of any rate (within a range up to OPUk payload capacity) Bit rate is a fixed bit rate with a small tolerance in the ppm range. For inclusion in G.709 version 2 Description in G.709 Living List Further development in 2001/2002 timeframe April 2002 52 Contents OTN Rationale OTN Layer Networks Multi level Connection Monitoring OTM Signals Maintenance Signals Mapping Client Signals Multiplexing Virtual Concatenation OTN Standards Wavelength Division Multiplex (WDM) Time Division Multiplex (TDM) TDM Tributary Slots TDM Overhead TDM Mapping April 2002 53 Wavelength Division Multiplex OTM-16r.m signal • 16 channels • fixed 200 GHz grid independent of bit rate of OCh signal • designed for interworking purposes OTM-n.m signal • no predefined number of channels • no predefined grid • grid may depend on bit rate of OCh signal – e.g. 25, 50, 100 GHz for OTU1, OTU2, OTU3 resp. • developments in technology are driving capabilities April 2002 54 Wavelength Division Multiplex - Structure OTM-0.m OCCr x1 x1 OChr xi x1 OTM-nr.m xj OCG-nr.m 1 i+j+k n OCCr x1 x1 OChr OTU3[V] xk OCCr x1 OChr x1 OCC x1 OCh OTU2[V] x1 xi OTU1[V] x1 OTM-n.m xj OCG-n.m x1 1 i+j+k n OSC OCC x1 OCh x1 xk OCC x1 OOS x1 OCh x1 OTS, OMS, OCh, COMMS OH April 2002 55 Time Division Multiplex TDM muxing in the OTN will be applied for: • lower rate service signal transport – in long distance line systems and/or sub-networks optimised for single (higher) bit rate • increased throughput – in optical fabrics and/or sub-networks • reduced administrative complexity – in large networks • lower cost networks TDM muxing introduces additional complexity when tributary signal must be routed • requires demux and mux stages around switch fabric April 2002 56 Time Division Multiplex TDM muxing is muxing of ODUk signals into higher order ODUk signals • ODU1 into ODU2 • ODU1 and/or ODU2 into ODU3 – ODU1 into ODU2 into ODU3 is possible, but not the recommended method when ODU1s are the service signals that are to be switched/cross connected within an "ODU3 network" – if ODU1s enter such ODU3 network via ODU2, the ODU2 is terminated at the edge and the ODU1s are remultiplexed into an ODU3 – if ODU2 is service signal, of course no demuxing/remuxing will occur at edges Multiplexing via byte interleaving April 2002 57 Time Division Multiplex - Structure OTU3[V] x1 ODU3 x1 Client Signal OPU3 x1 ODTUG3 x 16 x4 OTU2[V] x1 ODU2 x1 Client Signal OPU2 x1 ODTUG2 OTU1[V] x1 x4 ODU1 Multiplexing x1 OPU1 Mapping April 2002 58 Client Signal Time Division Multiplex - artist impression 4x ODU1 into ODU2 payload • ODU1 adapted to ODU1 floats in ¼ of the OPU2 ODU1 OH ODU1 frame will cross an ODU2 frame boundary Client Layer Signal (e.g. STM-16, ATM, GFP) ODU2 OH Alignm OTU2 OH ODU2 OH Alignm Alignm Alignm Alignm Alignm Alignm Alignm Alignm ODU1 OH ODU1 OH ODU1 OH ODU1 OH OPU1 OH OPU1 OH OPU1 OH OPU1 OH ODU2 OPU2 OH 4x OTU2 OPU1 OH ODU1 ODU1 OH ODU1 OH ODU1 OH ODU1 OH OPU1 OH OPU1 OH OPU1 OH OPU1 OH ODU2 clock via justification • adapted ODU1 signals byte interleaved into OPU2 • ODU2 and OTU2 overhead added Alignm OPU2 OH Client Layer Signal Client(e.g. Layer Signal STM-16) Client(e.g. Layer Signal STM-16) Client(e.g. Layer Signal STM-16) (e.g. STM-16, ATM, GFP) Client Layer Signal Client(e.g. Layer Signal STM-16) Client(e.g. Layer Signal STM-16) Client(e.g. Layer Signal STM-16) (e.g. STM-16, ATM, GFP) OPU2 Payload OTU2 FEC NOTE - The ODU1 floats in ¼ of the OPU2 Payload area. An ODU1 frame will cross multiple ODU2 frame boundaries. A complete ODU1 frame (15296 bytes) requires the bandwidth of (15296/3808 = ) 4.017 ODU2 frames. This is not illustrated. April 2002 59 4 10 4 11 4 60 3 1 2 3 1 2 3 OPU2 Payload (4 x 3808 bytes) OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 Payload (4 x 3808 bytes) OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 Payload (4 x 3808 bytes) OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 2 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 01 JOH TS 1 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 1 JOH TS 2 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 3 OPU2 Payload (4 x 3808 bytes) JOH TS 3 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 2 JOH TS 4 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 OPU2 TribSlot 1 OPU2 TribSlot 2 OPU2 TribSlot 3 OPU2 TribSlot 4 PSI 4 PSI 00 PSI 3821 3822 3823 3824 15 16 17 18 19 20 21 Column MFAS 1 bits Row 78 1 PSI Time Division Multiplex ODU2 Tributary Slot Allocation April 2002 4 0001 4 1111 4 61 1 2 3 1 2 3 OPU3 TribSlot 15 OPU3 TribSlot 16 OPU3 Payload (4 x 3808 bytes) OPU3 TribSlot 15 OPU3 TribSlot 16 OPU3 Payload (4 x 3808 bytes) OPU3 TribSlot 15 OPU3 TribSlot 16 JOH TS 1 OPU3 TribSlot 1 OPU3 TribSlot 2 OPU3 TribSlot 3 OPU3 TribSlot 4 OPU3 TribSlot 5 OPU3 TribSlot 6 OPU3 TribSlot 7 OPU3 TribSlot 8 OPU3 TribSlot 9 OPU3 TribSlot 10 OPU3 TribSlot 11 OPU3 TribSlot 12 OPU3 TribSlot 13 OPU3 TribSlot 14 OPU3 TribSlot 15 OPU3 TribSlot 16 OPU3 TribSlot 1 OPU3 TribSlot 2 OPU3 TribSlot 3 3 OPU3 Payload (4 x 3808 bytes) JOH TS 2 OPU3 TribSlot 1 OPU3 TribSlot 2 OPU3 TribSlot 3 OPU3 TribSlot 4 OPU3 TribSlot 5 OPU3 TribSlot 6 OPU3 TribSlot 7 OPU3 TribSlot 8 OPU3 TribSlot 9 OPU3 TribSlot 10 OPU3 TribSlot 11 OPU3 TribSlot 12 OPU3 TribSlot 13 OPU3 TribSlot 14 OPU3 TribSlot 15 OPU3 TribSlot 16 OPU3 TribSlot 1 OPU3 TribSlot 2 OPU3 TribSlot 3 PSI 0000 PSI 2 JOH TS 16 OPU3 TribSlot 1 OPU3 TribSlot 2 OPU3 TribSlot 3 OPU3 TribSlot 4 OPU3 TribSlot 5 OPU3 TribSlot 6 OPU3 TribSlot 7 OPU3 TribSlot 8 OPU3 TribSlot 9 OPU3 TribSlot 10 OPU3 TribSlot 11 OPU3 TribSlot 12 OPU3 TribSlot 13 OPU3 TribSlot 14 OPU3 TribSlot 15 OPU3 TribSlot 16 OPU3 TribSlot 1 OPU3 TribSlot 2 OPU3 TribSlot 3 3821 3822 3823 3824 31 32 33 34 15 16 17 18 19 20 21 22 23 Column MFAS bits Row 1 5678 1 PSI Time Division Multiplex ODU3 Tributary Slot Allocation April 2002 Time Division Multiplex - Overhead MSI, JC, PJO1, PJO2 15 16 17 3821 3822 3823 3824 Column JC 2 NJO PSI 3 4 OPUk Payload (4 x 3808 bytes) JC 1 JC Row PJO 1 2 3 4 5 6 7 8 JC 0 OPU2 62 48 1111 PJO2 11 0010 32 PJO2 33 PJO2 34 PJO2 35 Reserved 0001 PJO1 10 MFAS bits 5678 0000 PJO1 01 OPU3 PJO1 17 18 19 17 18 MFAS bits 78 00 PJO1 MSI PJO1 17 18 PJO1 19 PJO1 20 PJO2 21 PJO2 22 PJO2 23 PJO2 24 2 255 JC Reserved PJO1 1 Reserved April 2002 Time Division Multiplex - Mapping Asynchronous mapping of ODU information bytes -1, 0, +1, +2 byte justification control ODU1 into ODU3 mapping includes Fixed Stuff column • ODU1 into ODU2 and ODU2 into ODU3 mapping is without 3823 3824 3808 3809 31 32 33 1919 1920 1921 OPU3 Payload transporting 16x ODU1 OPU3 TribSlot 15 OPU3 TribSlot 16 4 PSI 3 OPU3 Payload transporting 16x ODU1 OPU3 TribSlot 1 2 FOPU3 IX TribSlot 1 ED ST U 15 OPU3 TribSlot FF OPU3 TribSlot 16 1 OPU3 TribSlot 15 OPU3 TribSlot 16 16 JOH OPU3 TribSlot 1 1 Row 17 Column 1904 1905 fixed stuff April 2002 63 Contents OTN Rationale OTN Layer Networks Multi level Connection Monitoring OTM Signals Maintenance Signals Mapping Client Signals Multiplexing Virtual Concatenation OTN Standards ODUk-Xv OPUk-Xv Overhead Mapping Client signals April 2002 64 Virtual Concatenation Virtual Concatenated ODUk's • ODUk-Xv, with X=1..256 Provide • Ability to transport STM-64 and STM-256 signals via fibers not supporting 10G and/or 40G wavelengths – STM-64 into ODU1-4v – STM-256 into ODU2-4v or ODU1-16v • Finer granularity bandwidth for data signals – X * 2G5 [10G] [40G] via ODU1-Xv [ODU2-Xv] [ODU3-Xv] – Application of Link Capacity Adjustment Scheme (LCAS, Rec. G.7042) offers Hitless bandwidth modification Build in resilience when signal components routed via two or more diverse routes April 2002 65 3824X 3823X+1 16X 15X 15X+1 14X+1 14X+2 Virtual Concatenation - Inverse muxing 1 Mapping of client signal into OPUk-X Inverse muxing of OPUk-X signal into X OPUk signals ODUk overhead is added to each of the X OPUk signals 2 OPUk-X Payload 3 4 OPUk-Xv Payload (4 x 3808 x X bytes) OPUk-Xv OH (8 x X bytes) 15 16 17 18 3824 15 16 3824 3 VCOH 1 2 2 VCOH 1 OPUk-Xv 4 PSI OPUk#X 3 4 PSI OPUk OH 66 ODUk signals are transported OPUk#1 OPUk Payload (4 x 3808 bytes) April 2002 Virtual Concatenation - Overhead CTRL GID RSA MST CRC8 Res 15 VCOH 1 1 VCOH 2 2 VCOH 3 3 4 0 1 2 PSI 16 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 00000 0 MFI1 0 1 2 3 4 5 6 7 CRC8 00001 1 MFI2 8 9 CRC8 00010 2 Reserved CRC8 00011 3 Reserved CRC8 00100 4 SQ CRC8 00100 5 CTRL Reserved 11111 CRC8 RES PT vcPT RES VCOH3 Member Status MST (0 - 255) CRC8 255 – – – – – – Column # VCOH2 GID RSA VCOH • MFI1, MFI2 • SQ • LCAS MFAS 45678 Mapping specific VCOH1 PSI • vcPT Row# 31 SQ, CRC8 MFI1 1 2 3 4 5 6 7 8 CRC8 MFI2 CTRL 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 254 255 RSA: RS-Ack 67 MSB LSB MSB LSB MSB April 2002 LSB 2 4 68 PSI VCOH 1 3 PSI X=16 15231D 15231D 15231D 15231D Column 15231D 15231D 15231D 15231D 3 4 x 3808D - 1 4 4 x 3808D - 1 3824X 4 x 3808D - 1 STM-64 into OPU1-4v STM-256 into OPU2-4v 3824X 2 4 x 118 x 16D - 1 4 x 16FS 4 x 119 x 16D 4 x 118 x 16D - 1 4 x 16FS 4 x 119 x 16D 4 x 118 x 16D - 1 4 x 16FS 4 x 119 x 16D 4 x 118 x 16D - 1 4 x 16FS 4 x 119 x 16D STM-256 into OPU1-16v 15231D 15231D 15231D 15231D 15231D 15231D 15231D 15231D April 2002 3824X 4 x 3808D - 1 2871X+18 2871X+13 1 1920X+1 1920X 1904X 190X+1 X=4 JC JC JC JC JC JC JC JC JC JC JC JC NJO NJO NJO NJO PJO PJO PJO PJO 4 1919X+13 3 1919X+9 2 JC JC JC JC JC JC JC JC JC JC JC JC NJO NJO NJO NJO PJO PJO PJO PJO Test signals 1 968X+9 GFP (IP, ETH, MPLS) 967X+4 14X+1 14X+2 PSI VCOH 14X+1 14X+3 PSI VCOH 14X+2 15X PSI VCOH 14X+3 15X+1 PSI VCOH 15X 15X+2 JC JC JC JC 15X+1 15X+3 JC JC JC JC 15X+2 16X JC JC JC JC 15X+3 16X+1 NJO NJO NJO NJO 16X 16X+2 PJO PJO PJO PJO 16X+1 16X+3 16X+2 17X 16X+3 17X ATM PSI VCOH PSI VCOH PSI VCOH PSI VCOH JC JC JC JC JC JC JC JC JC JC JC JC NJO NJO NJO NJO PJO PJO PJO PJO 15X+5 15X+1 15X STM-N • asynchronous • bitsynchronous JC JC JC JC JC JC JC JC JC JC JC JC NJO NJO NJO NJO PJO PJO PJO PJO Row JC JC JC JC JC JC JC JC JC JC JC JC NJO NJO NJO NJO PJO PJO PJO PJO 14X+1 VCOH Virtual Concatenation - Mapping Contents OTN Rationale OTN Layer Networks Multi level Connection Monitoring OTM Signals Maintenance Signals Mapping Client Signals Multiplexing Virtual Concatenation OTN Standards April 2002 69 OTN Standards in ITU-T - Transport Plane 70 Framework G.871 (10/00) Network Architecture G.872 (10/01) Structures and bit rates G.709 (02/01), G.709 am.1 (10/01) Equipment G.798 (10/01) Equipment Management Function G.874 (10/01), G.7710 (11/01) Protection G.gps (2002), G.otnprot (2002) Data Communication Network G.7712 (10/01) Jitter & Wander Performance G.8251 (2002) Error Performance G.optperf (2002) Physical G.959.1 (02/01), G.693, G.dsn (2003) Information Model G.874.1 (10/01), G.875 (2002) Optical Safety G.664 (06/99) Generic Framing Procedure G.7041 (10/01) Link Capacity Adjustment Scheme G.7042 (10/01) Bringing into Service & Maintenance M.24otn (2003) Q factor measurement O.qfm (?) April 2002 OTN Standards in ITU-T - Control Plane Automatic Switched Transport Network G.807 (05/01) Automatic Switched Optical Network G.8080 (10/01) Distributed Connection Management G.7713 (10/01) Automatic Discovery Techniques G.7714 (10/01) Routing G.7715 (2002) Signalling Communication Network G.7712 (10/01) Link Resource Manager G.7716 (2002?) April 2002 71 OTN Standards in ITU-T ITU-T OTN Recommendations Transport Plane Network Architecture (G.872) Structures & Mappings (G.709) Framework for OTN Rec's (G.871/Y.1301) Physical Layer (G.959.1, G.692, G.693, G.dsn) Equipment Functional Spec. (G.798, G.806) Equipment Man. Function (G.874, G.7710) Information Model (G.874.1, G.875) Protection Switching (G.otnprot, G.gps) Automatic Power Shut Down Procedures for Optical Transport Systems (G.664) Data & Signalling Communication Network (G.7712) Jitter/Wander Performance (G.8251) Error Performance (G.optperf) Bringing into Service & Maintenance for the OTN (M.24otn) April 2002 72 OTN Standards in ITU-T ITU-T Recommendations Control Plane Automatic Switched Transport Network (G.807) Automatic Switched Optical Network (G.8080) Distributed Call & Connection Management (G.7713, G.7713.x (x=1,2,3)) Automatic Neighbor Discovery Techniques (G.7714) Link Resource Manager (G.7716) Routing (G.7715) Connection Admission Control (G.cac) Data & Signalling Communication Network (G.7712) April 2002 73 THANK YOU