Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Exact Recovery of Low-Rank Plus Compressed
Sparse Matrices
Morteza Mardani, Gonzalo Mateos and Georgios Giannakis
ECE Department, University of Minnesota
Acknowledgments: MURI (AFOSR FA9550-10-1-0567) grant
Ann Arbor, USA
August 6, 2012
1
Context
Occam’s razor
Image processing
Among competing hypotheses,
pick one which makes the fewest
assumptions and thereby offers
the simplest explanation of the
effect.
Network cartography
x 10
7
4
|xf,t|
3
2
1
0
0
100
200
300
Time index (t)
400
500
2
Objective
F
T
L
Goal: Given data matrix
and low rank
and compression matrix
, identify sparse
.
3
Challenges and importance
 Both rank(
) and support of
 Seriously underdetermined
generally unknown
LT
X
+
FT
A
(F ≥ L)
>>
LT
Y
 Important special cases
 R = I : matrix decomposition [Candes et al’11], [Chandrasekaran et al’11]
 X = 0 : compressive sampling [Candes et al’05]
 A = 0: (with noise) PCA [Pearson’1901]
4
Unveiling traffic anomalies
 Backbone of IP networks
 Traffic anomalies: changes in origin-destination
(OD) flows
 Failures, transient congestions, DoS attacks, intrusions, flooding
 Anomalies congestion limits end-user QoS provisioning
 Measuring superimposed OD flows per link, identify anomalies
5
Model
 Graph G (N, L) with N nodes, L links, and F flows (F=O(N2) >> L)
(as) Single-path per OD flow zf,t
1
0.9
f2
0.8
0.7
 Packet counts per link l and time slot t
l
0.6
0.5
Anomaly
f1
0.4
0.3
0.2
0.1
0
0
0.2
0.4
0.6
0.8
1
є {0,1}
 Matrix model across T time slots
LxT
LxF
6
Low rank and sparsity
 Z: traffic matrix is7 low-rank [Lakhina et al‘04]  X: low-rank
x 10
4
|xf,t|
3
2
1
0
0
100
200
300
Time index (t)
400
500
 A:
anomaly matrix is sparse across both time
and flows
8
8
x 10
4
|af,t|
|af,t|
4
2
0
0
200
400
600
Time index(t)
800
1000
x 10
2
0
0
50
Flow index(f)
100
7
Criterion
 Low-rank  sparse vector of SVs  nuclear norm || ||* and l1 norm
(P1)
Q: Can one recover sparse
and low-rank
exactly?
A: Yes! Under certain conditions on
8
Identifiability
Y = X0+ RA0 = X0 + RH + R(A0 - H)
X1
 Problematic cases

but

 For
low-rank and
A1
sparse
,
and r = rank(X0), low-rank-preserving matrices RH
 Sparsity-preserving matrices RH
9
Incoherence measures
ΩR
θ=cos-1(μ)
Ф
 Incoherence among columns of R 
,
 Local identifiability
requires
,
 Exact recovery requires
,
 Incoherence between X0 and R
10
Main result
Theorem: Given and , if every row and column of
k non-zero entries and
, then
imply Ǝ
has at most
for which (P1) exactly recovers
M. Mardani, G. Mateos, and G. B. Giannakis,``Recovery of low-rank plus compressed sparse matrices with
application to unveiling traffic anomalies," IEEE Trans. Info. Theory, submitted Apr. 2012.(arXiv: 1204.6537)11
Intuition
 Exact recovery if
 r and s are sufficiently small
 Nonzero entries of A0 are “sufficiently spread out”
 Columns (rows) of X0 not aligned with basis of R (canonical basis)
 R behaves like a “restricted” isometry
 Interestingly
 Amplitude of non-zero entries of A0 irrelevant
 No randomness assumption
 Satisfiability for certain random ensembles w.h.p
12
Validating exact recovery
50
0.7
0.6
40
R
rank(X ) (r)
 Setup
L=105, F=210, T = 420
R=URSRV’R~ Bernoulli(1/2)
X = V’R WZ’, W, Z ~ N(0, 104/FT)
aij ϵ {-1,0,1} w. prob. {ρ/2, 1-ρ, ρ/2}
0.5
30
0.4
0.3
20
0.2
10
0.1
 Relative recovery error
0.1
0
2.5 4.5 6.5 8.5 10.5 12.5
% non-zero entries ()
13
Real data
 Abilene network data
 Dec. 8-28, 2008
 N=11, L=41, F=121, T=504
---- True
---- Estimated
0.8
[Lakhina04], rank=1
[Lakhina04], rank=2
[Lakhina04], rank=3
Proposed method
[Zhang05], rank=1
[Zhang05], rank=2
[Zhang05], rank=3
0.6
0.4
0.2
0
0
0.2
0.4
0.6
0.8
False alarm probability
6
1
Anomaly amplitude
Detection probability
1
5
4
3
2
1
0
Pf = 0.03
Pd = 0.92
Qe = 27%
100
500
400
300
Flow 50
0
Data: http://internet2.edu/observatory/archive/data-collections.html
100
0
200
Time
14
Synthetic data
 Random network topology
1
0.8
0.6
 N=20, L=108, F=360, T=760
 Minimum hop-count routing
0.4
0.2
0
0
0.2
0.4
0.6
0.8
1
1
Detection probability
0.8
---- True
---- Estimated
0.6
0.4
PCA-based method, r=5
PCA-based method, r=7
PCA-based method, r=9
Proposed method, per time and flow
0.2
0
0
0.2
0.4
0.6
False alarm probability
0.8
1
Pf=10-4
Pd = 0.97
15
Distributed estimator
 Centralized
(P2)
 Network: undirected, connected graph
?
?
? ?
?
?
?
n
?
 Challenges
 Nuclear norm is not separable
 Global optimization variable A
 Key result [Recht et al’11]
M. Mardani, G. Mateos, and G. B. Giannakis, "In-network sparsity-regularized rank minimization:
Algorithms and applications," IEEE Trans. Signal Process., submitted Feb. 2012.(arXiv: 1203.1570)
16
Consensus and optimality
(P3)
Consensus with
neighboring nodes
 Alternating-directions method of multipliers (ADMM) solver
 Highly parallelizable with simple recursions
 Low overhead for message exchanges
n
Claim: Upon convergence attains the global optimum of (P2)
17
Online estimator
 Streaming data:
(P4)
ATLA--HSTN
CHIN--ATLA
5
4
0
DNVR--KSCY
20
10
0
HSTN--ATLA
20
Anomaly amplitude
Link traffic level
2
0
WASH--STTL
40
20
0
WASH--WASH
30
20
10
10
0
0
Time index (t)
---- estimated
---- real
0
1000
2000
3000
4000
5000
6000
Time index (t)
o---- estimated
---- real
Claim: Convergence to stationary point set of the batch estimator
M. Mardani, G. Mateos, and G. B. Giannakis, "Dynamic anomalography: Tracking network anomalies via
18
sparsity and low rank," IEEE Journal of Selected Topics in Signal Processing, submitted Jul. 2012.
Related documents