* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 3rd Edition, Chapter 5
Piggybacking (Internet access) wikipedia , lookup
Airborne Networking wikipedia , lookup
Network tap wikipedia , lookup
Wireless security wikipedia , lookup
Multiprotocol Label Switching wikipedia , lookup
Deep packet inspection wikipedia , lookup
Computer network wikipedia , lookup
Point-to-Point Protocol over Ethernet wikipedia , lookup
IEEE 802.11 wikipedia , lookup
IEEE 802.1aq wikipedia , lookup
Dynamic Host Configuration Protocol wikipedia , lookup
Wake-on-LAN wikipedia , lookup
Cracking of wireless networks wikipedia , lookup
Internet protocol suite wikipedia , lookup
Recursive InterNetwork Architecture (RINA) wikipedia , lookup
Chapter 5 Link Layer and LANs A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!) If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Thanks and enjoy! JFK/KWR All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved 5: DataLink Layer 5-1 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m m m m error detection, correction sharing a broadcast channel: multiple access link layer addressing reliable data transfer, flow control: done! r instantiation and implementation of various link layer technologies 5: DataLink Layer 5-2 Link Layer r 5.1 Introduction and r r r r services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-layer Addressing 5.5 Ethernet r 5.6 Link-layer switches r 5.7 PPP r 5.8 Link virtualization: MPLS r 5.9 A day in the life of a web request 5: DataLink Layer 5-3 Link Layer: Introduction Some terminology: r r hosts and routers are nodes communication channels that connect adjacent nodes along communication path are links m m m r wired links wireless links LANs layer-2 packet is a frame, encapsulates datagram data-link layer has responsibility of transferring datagram from one node to adjacent node over a link 5: DataLink Layer 5-4 Link layer: context r datagram transferred by different link protocols over different links: m e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link r each link protocol provides different services m e.g., may or may not provide rdt over link transportation analogy r trip from Princeton to Lausanne m limo: Princeton to JFK m plane: JFK to Geneva m train: Geneva to Lausanne r tourist = datagram r transport segment = communication link r transportation mode = link layer protocol r travel agent = routing algorithm 5: DataLink Layer 5-5 Link Layer Services r framing, link access: m m m encapsulate datagram into frame, adding header, trailer channel access if shared medium “MAC” addresses used in frame headers to identify source, dest • different from IP address! r reliable delivery between adjacent nodes m we learned how to do this already (chapter 3)! m seldom used on low bit-error link (fiber, some twisted pair) m wireless links: high error rates • Q: why both link-level and end-end reliability? 5: DataLink Layer 5-6 Link Layer Services (more) r flow control: m pacing between adjacent sending and receiving nodes r error detection: m m errors caused by signal attenuation, noise. receiver detects presence of errors: • signals sender for retransmission or drops frame r error correction: m receiver identifies and corrects bit error(s) without resorting to retransmission r half-duplex and full-duplex m with half duplex, nodes at both ends of link can transmit, but not at same time 5: DataLink Layer 5-7 Where is the link layer implemented? r in each and every host r link layer implemented in “adaptor” (aka network interface card NIC) m m Ethernet card, PCMCI card, 802.11 card implements link, physical layer r attaches into host’s system buses r combination of hardware, software, firmware host schematic application transport network link cpu memory controller link physical host bus (e.g., PCI) physical transmission network adapter card 5: DataLink Layer 5-8 Adaptors Communicating datagram datagram controller controller receiving host sending host datagram frame r sending side: m encapsulates datagram in frame m adds error checking bits, rdt, flow control, etc. r receiving side m looks for errors, rdt, flow control, etc m extracts datagram, passes to upper layer at receiving side 5: DataLink Layer 5-9 Multiple Access Links and Protocols Two types of “links”: r point-to-point m PPP for dial-up access m point-to-point link between Ethernet switch and host r broadcast (shared wire or medium) m old-fashioned Ethernet m upstream HFC m 802.11 wireless LAN shared wire (e.g., cabled Ethernet) shared RF (e.g., 802.11 WiFi) shared RF (satellite) humans at a cocktail party (shared air, acoustical) 5: DataLink Layer 5-10 Multiple Access protocols r single shared broadcast channel r two or more simultaneous transmissions by nodes: interference m collision if node receives two or more signals at the same time multiple access protocol r distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit r communication about channel sharing must use channel itself! m no out-of-band channel for coordination 5: DataLink Layer 5-11 Ideal Multiple Access Protocol Broadcast channel of rate R bps 1. when one node wants to transmit, it can send at rate R. 2. when M nodes want to transmit, each can send at average rate R/M 3. fully decentralized: m m no special node to coordinate transmissions no synchronization of clocks, slots 4. simple 5: DataLink Layer 5-12 MAC Protocols: a taxonomy Three broad classes: r Channel Partitioning m m divide channel into smaller “pieces” (time slots, frequency, code) allocate piece to node for exclusive use r Random Access m channel not divided, allow collisions m “recover” from collisions r “Taking turns” m nodes take turns, but nodes with more to send can take longer turns 5: DataLink Layer 5-13 Channel Partitioning MAC protocols: TDMA TDMA: time division multiple access r access to channel in "rounds" r each station gets fixed length slot (length = pkt trans time) in each round r unused slots go idle r example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle 6-slot frame 1 3 4 1 3 4 5: DataLink Layer 5-14 Channel Partitioning MAC protocols: FDMA FDMA: frequency division multiple access r channel spectrum divided into frequency bands r each station assigned fixed frequency band r unused transmission time in frequency bands go idle r example: 6-station LAN, 1,3,4 have pkt, frequency FDM cable frequency bands bands 2,5,6 idle 5: DataLink Layer 5-15 Random Access Protocols r When node has packet to send m transmit at full channel data rate R. m no a priori coordination among nodes r two or more transmitting nodes ➜ “collision”, r random access MAC protocol specifies: m how to detect collisions m how to recover from collisions (e.g., via delayed retransmissions) r Examples of random access MAC protocols: m slotted ALOHA m ALOHA m CSMA, CSMA/CD, CSMA/CA 5: DataLink Layer 5-16 Slotted ALOHA Assumptions: r all frames same size r time divided into equal size slots (time to transmit 1 frame) r nodes start to transmit only slot beginning r nodes are synchronized r if 2 or more nodes transmit in slot, all nodes detect collision Operation: r when node obtains fresh frame, transmits in next slot m if no collision: node can send new frame in next slot m if collision: node retransmits frame in each subsequent slot with prob. p until success 5: DataLink Layer 5-17 Slotted ALOHA Pros r single active node can continuously transmit at full rate of channel r highly decentralized: only slots in nodes need to be in sync r simple Cons r collisions, wasting slots r idle slots r nodes may be able to detect collision in less than time to transmit packet r clock synchronization 5: DataLink Layer 5-18 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit entire frame r If channel sensed busy, defer transmission r human analogy: don’t interrupt others! 5: DataLink Layer 5-19 CSMA collisions spatial layout of nodes collisions can still occur: propagation delay means two nodes may not hear each other’s transmission collision: entire packet transmission time wasted note: role of distance & propagation delay in determining collision probability 5: DataLink Layer 5-20 CSMA/CD (Collision Detection) CSMA/CD: carrier sensing, deferral as in CSMA m m collisions detected within short time colliding transmissions aborted, reducing channel wastage r collision detection: m easy in wired LANs: measure signal strengths, compare transmitted, received signals m difficult in wireless LANs: received signal strength overwhelmed by local transmission strength r human analogy: the polite conversationalist 5: DataLink Layer 5-21 CSMA/CD collision detection 5: DataLink Layer 5-22 “Taking Turns” MAC protocols channel partitioning MAC protocols: m share channel efficiently and fairly at high load m inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node! Random access MAC protocols m efficient at low load: single node can fully utilize channel m high load: collision overhead “taking turns” protocols look for best of both worlds! 5: DataLink Layer 5-23 “Taking Turns” MAC protocols Polling: r master node “invites” slave nodes to transmit in turn r typically used with “dumb” slave devices r concerns: m m m polling overhead latency single point of failure (master) data poll master data slaves 5: DataLink Layer 5-24 “Taking Turns” MAC protocols Token passing: r control token passed from one node to next sequentially. r token message r concerns: m m m token overhead latency single point of failure (token) T (nothing to send) T data 5: DataLink Layer 5-25 Summary of MAC protocols r channel partitioning, by time, frequency or code m Time Division, Frequency Division r random access (dynamic), m ALOHA, S-ALOHA, CSMA, CSMA/CD m carrier sensing: easy in some technologies (wire), hard in others (wireless) m CSMA/CD used in Ethernet m CSMA/CA used in 802.11 r taking turns m polling from central site, token passing m Bluetooth, FDDI, IBM Token Ring 5: DataLink Layer 5-26 MAC Addresses and ARP r 32-bit IP address: m m network-layer address used to get datagram to destination IP subnet r MAC (or LAN or physical or Ethernet) address: m m function: get frame from one interface to another physically-connected interface (same network) 48 bit MAC address (for most LANs) • burned in NIC ROM, also sometimes software settable 5: DataLink Layer 5-27 LAN Addresses and ARP Each adapter on LAN has unique LAN address 1A-2F-BB-76-09-AD 71-65-F7-2B-08-53 LAN (wired or wireless) Broadcast address = FF-FF-FF-FF-FF-FF = adapter 58-23-D7-FA-20-B0 0C-C4-11-6F-E3-98 5: DataLink Layer 5-28 LAN Address (more) r MAC address allocation administered by IEEE r manufacturer buys portion of MAC address space (to assure uniqueness) r analogy: (a) MAC address: like Social Security Number (b) IP address: like postal address r MAC flat address ➜ portability m can move LAN card from one LAN to another r IP hierarchical address NOT portable m address depends on IP subnet to which node is attached 5: DataLink Layer 5-29 ARP: Address Resolution Protocol Question: how to determine MAC address of B knowing B’s IP address? 137.196.7.78 1A-2F-BB-76-09-AD 137.196.7.23 r Each IP node (host, router) on LAN has ARP table r ARP table: IP/MAC address mappings for some LAN nodes 137.196.7.14 m LAN 71-65-F7-2B-08-53 137.196.7.88 < IP address; MAC address; TTL> 58-23-D7-FA-20-B0 TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min) 0C-C4-11-6F-E3-98 5: DataLink Layer 5-30 ARP protocol: Same LAN (network) r r r A wants to send datagram to B, and B’s MAC address not in A’s ARP table. A broadcasts ARP query packet, containing B's IP address m dest MAC address = FFFF-FF-FF-FF-FF m all machines on LAN receive ARP query B receives ARP packet, replies to A with its (B's) MAC address m frame sent to A’s MAC address (unicast) r A caches (saves) IP-toMAC address pair in its ARP table until information becomes old (times out) m soft state: information that times out (goes away) unless refreshed r ARP is “plug-and-play”: m nodes create their ARP tables without intervention from net administrator 5: DataLink Layer 5-31 Addressing: routing to another LAN walkthrough: send datagram from A to B via R assume A knows B’s IP address 88-B2-2F-54-1A-0F 74-29-9C-E8-FF-55 A 111.111.111.111 E6-E9-00-17-BB-4B 1A-23-F9-CD-06-9B 222.222.222.220 111.111.111.110 111.111.111.112 R 222.222.222.221 222.222.222.222 B 49-BD-D2-C7-56-2A CC-49-DE-D0-AB-7D r two ARP tables in router R, one for each IP network (LAN) 5: DataLink Layer 5-32 r r r r r r r r A creates IP datagram with source A, destination B A uses ARP to get R’s MAC address for 111.111.111.110 A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram This is a really important A’s NIC sends frame example – make sure you understand! R’s NIC receives frame R removes IP datagram from Ethernet frame, sees its destined to B R uses ARP to get B’s MAC address R creates frame containing A-to-B IP datagram sends to B 88-B2-2F-54-1A-0F 74-29-9C-E8-FF-55 A E6-E9-00-17-BB-4B 111.111.111.111 222.222.222.220 111.111.111.110 111.111.111.112 222.222.222.221 1A-23-F9-CD-06-9B R 222.222.222.222 B 49-BD-D2-C7-56-2A CC-49-DE-D0-AB-7D 5: DataLink Layer 5-33 Ethernet “dominant” wired LAN technology: r cheap $20 for NIC r first widely used LAN technology r simpler, cheaper than token LANs and ATM r kept up with speed race: 10 Mbps – 10 Gbps Metcalfe’s Ethernet sketch 5: DataLink Layer 5-34 Star topology r bus topology popular through mid 90s m all nodes in same collision domain (can collide with each other) r today: star topology prevails m active switch in center m each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with each other) switch bus: coaxial cable star 5: DataLink Layer 5-35 Ethernet Frame Structure Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame Preamble: r 7 bytes with pattern 10101010 followed by one byte with pattern 10101011 r used to synchronize receiver, sender clock rates 5: DataLink Layer 5-36 Ethernet Frame Structure (more) r Addresses: 6 bytes m if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to network layer protocol m otherwise, adapter discards frame r Type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk) r CRC: checked at receiver, if error is detected, frame is dropped 5: DataLink Layer 5-37 Ethernet: Unreliable, connectionless r connectionless: No handshaking between sending and receiving NICs r unreliable: receiving NIC doesn’t send acks or nacks to sending NIC m m m stream of datagrams passed to network layer can have gaps (missing datagrams) gaps will be filled if app is using TCP otherwise, app will see gaps r Ethernet’s MAC protocol: unslotted CSMA/CD 5: DataLink Layer 5-38 Ethernet CSMA/CD algorithm 1. NIC receives datagram 4. If NIC detects another from network layer, transmission while creates frame transmitting, aborts and sends jam signal 2. If NIC senses channel idle, starts frame transmission 5. After aborting, NIC If NIC senses channel enters exponential busy, waits until channel backoff: after mth idle, then transmits collision, NIC chooses K at random from 3. If NIC transmits entire {0,1,2,…,2m-1}. NIC waits frame without detecting K·512 bit times, returns to another transmission, NIC Step 2 is done with frame ! 5: DataLink Layer 5-39 Ethernet’s CSMA/CD (more) Jam Signal: make sure all other transmitters are aware of collision; 48 bits Bit time: .1 microsec for 10 Mbps Ethernet ; for K=1023, wait time is about 50 msec See/interact with Java applet on AWL Web site: highly recommended ! Exponential Backoff: r Goal: adapt retransmission attempts to estimated current load m heavy load: random wait will be longer r first collision: choose K from {0,1}; delay is K· 512 bit transmission times r after second collision: choose K from {0,1,2,3}… r after ten collisions, choose K from {0,1,2,3,4,…,1023} 5: DataLink Layer 5-40 802.3 Ethernet Standards: Link & Physical Layers r many different Ethernet standards m common MAC protocol and frame format m different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps m different physical layer media: fiber, cable application transport network link physical MAC protocol and frame format 100BASE-TX 100BASE-T2 100BASE-FX 100BASE-T4 100BASE-SX 100BASE-BX copper (twister pair) physical layer fiber physical layer 5: DataLink Layer 5-41 Manchester encoding r used in 10BaseT r each bit has a transition r allows clocks in sending and receiving nodes to synchronize to each other m no need for a centralized, global clock among nodes! r Hey, this is physical-layer stuff! 5: DataLink Layer 5-42 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links at same rate m all nodes connected to hub can collide with one another m no frame buffering m no CSMA/CD at hub: host NICs detect collisions twisted pair hub 5: DataLink Layer 5-43 Switch r link-layer device: smarter than hubs, take active role m m store, forward Ethernet frames examine incoming frame’s MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment r transparent m hosts are unaware of presence of switches r plug-and-play, self-learning m switches do not need to be configured 5: DataLink Layer 5-44 Switch: allows multiple simultaneous transmissions A r hosts have dedicated, direct connection to switch r switches buffer packets r Ethernet protocol used on each incoming link, but no collisions; full duplex m each link is its own collision domain r switching: A-to-A’ and B- to-B’ simultaneously, without collisions m not possible with dumb hub C’ B 6 1 5 2 3 4 C B’ A’ switch with six interfaces (1,2,3,4,5,6) 5: DataLink Layer 5-45 Switch Table r Q: how does switch know that A’ reachable via interface 4, B’ reachable via interface 5? r A: each switch has a switch table, each entry: m C’ B 6 r Q: how are entries created, maintained in switch table? something like a routing protocol? 1 5 (MAC address of host, interface to reach host, time stamp) r looks like a routing table! m A 2 3 4 C B’ A’ switch with six interfaces (1,2,3,4,5,6) 5: DataLink Layer 5-46 Switch: self-learning r switch learns which hosts can be reached through which interfaces m m Source: A Dest: A’ A A A’ C’ when frame received, switch “learns” location of sender: incoming LAN segment records sender/location pair in switch table B 1 6 5 2 3 4 C B’ A’ MAC addr interface TTL A 1 60 Switch table (initially empty) 5: DataLink Layer 5-47 Switch: frame filtering/forwarding When frame received: 1. record link associated with sending host 2. index switch table using MAC dest address 3. if entry found for destination then { if dest on segment from which frame arrived then drop the frame else forward the frame on interface indicated } else flood forward on all but the interface on which the frame arrived 5: DataLink Layer 5-48 Self-learning, forwarding: example Source: A Dest: A’ A A A’ C’ B r frame destination unknown: flood A6A’ 1 2 4 5 r destination A location known: selective send C A’ A B’ 3 A’ MAC addr interface TTL A A’ 1 4 60 60 Switch table (initially empty) 5: DataLink Layer 5-49 Interconnecting switches r switches can be connected together S4 S1 S2 A B S3 C F D E I G H r Q: sending from A to G - how does S1 know to forward frame destined to F via S4 and S3? r A: self learning! (works exactly the same as in single-switch case!) 5: DataLink Layer 5-50 Institutional network to external network mail server router web server IP subnet 5: DataLink Layer 5-51 Switches vs. Routers r both store-and-forward devices m routers: network layer devices (examine network layer headers) m switches are link layer devices r routers maintain routing tables, implement routing algorithms r switches maintain switch tables, implement filtering, learning algorithms 5: DataLink Layer 5-52 Synthesis: a day in the life of a web request r journey down protocol stack complete! m application, transport, network, link r putting-it-all-together: synthesis! m goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page m scenario: student attaches laptop to campus network, requests/receives www.google.com 5: DataLink Layer 5-53 A day in the life: scenario DNS server browser Comcast network 68.80.0.0/13 school network 68.80.2.0/24 web page web server 64.233.169.105 Google’s network 64.233.160.0/19 5: DataLink Layer 5-54 A day in the life… connecting to the Internet DHCP UDP IP Eth Phy DHCP DHCP DHCP DHCP r DHCP r DHCP DHCP DHCP DHCP DHCP UDP IP Eth Phy router (runs DHCP) r r connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet Ethernet frame broadcast (dest: FFFFFFFFFFFF) on LAN, received at router running DHCP server Ethernet demux’ed to IP demux’ed, UDP demux’ed to DHCP 5: DataLink Layer 5-55 A day in the life… connecting to the Internet DHCP UDP IP Eth Phy DHCP DHCP DHCP DHCP r r DHCP DHCP DHCP DHCP DHCP DHCP UDP IP Eth Phy router (runs DHCP) r DHCP server formulates DHCP ACK containing client’s IP address, IP address of first-hop router for client, name & IP address of DNS server encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client DHCP client receives DHCP ACK reply Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router 5: DataLink Layer 5-56 A day in the life… ARP (before DNS, before HTTP) DNS DNS DNS ARP query before sending HTTP request, need IP address of www.google.com: DNS DNS query created, encapsulated in UDP, encapsulated in IP, encasulated in Eth. In order to send frame to router, need MAC address of router interface: ARP r DNS UDP IP ARP Eth Phy r ARP ARP reply Eth Phy r r ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface client now knows MAC address of first hop router, so can now send frame containing DNS query 5: DataLink Layer 5-57 A day in the life… using DNS DNS DNS DNS DNS DNS DNS DNS UDP IP Eth Phy DNS DNS DNS UDP IP Eth Phy DNS server DNS Comcast network 68.80.0.0/13 r r IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router r r IP datagram forwarded from campus network into comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server demux’ed to DNS server DNS server replies to client with IP address of www.google.com 5: DataLink Layer 5-58 A day in the life… TCP connection carrying HTTP HTTP HTTP TCP IP Eth Phy SYNACK SYN SYNACK SYN SYNACK SYN r r SYNACK SYN SYNACK SYN SYNACK SYN TCP IP Eth Phy web server 64.233.169.105 r r to send HTTP request, client first opens TCP socket to web server TCP SYN segment (step 1 in 3-way handshake) interdomain routed to web server web server responds with TCP SYNACK (step 2 in 3way handshake) TCP connection established! 5: DataLink Layer 5-59 A day in the life… HTTP request/reply r HTTP HTTP HTTP TCP IP Eth Phy HTTP HTTP HTTP HTTP HTTP HTTP web page finally (!!!) displayed r HTTP HTTP HTTP HTTP HTTP TCP IP Eth Phy web server 64.233.169.105 r r r HTTP request sent into TCP socket IP datagram containing HTTP request routed to www.google.com web server responds with HTTP reply (containing web page) IP datgram containing HTTP reply routed back to client 5: DataLink Layer 5-60 Chapter 5: Summary r principles behind data link layer services: m m m error detection, correction sharing a broadcast channel: multiple access link layer addressing r instantiation and implementation of various link layer technologies m Ethernet m switched LANS, VLANs m PPP m virtualized networks as a link layer: MPLS r synthesis: a day in the life of a web request 5: DataLink Layer 5-61