Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
7.1 – Radicals Radical Expressions Finding a root of a number is the inverse operation of raising a number to a power. This symbol is the radical or the radical sign radical sign index n a radicand The expression under the radical sign is the radicand. The index defines the root to be taken. 7.1 – Radicals Radical Expressions The above symbol represents the positive or principal root of a number. The symbol represents the negative root of a number. 7.1 – Radicals Square Roots A square root of any positive number has two roots – one is positive and the other is negative. If a is a positive number, then a is the positive square root of a and a is the negative square root of a. Examples: 100 10 5 25 7 49 36 6 0.81 0.9 4 x x 8 9 non-real # 7.1 Rdicals – Radicals Cube Roots 3 a A cube root of any positive number is positive. A cube root of any negative number is negative. Examples: 3 3 27 3 3 8 2 x x 3 4 x x 3 12 5 125 3 4 64 7.1 – Radicals nth Roots An nth root of any number a is a number whose nth power is a. Examples: 3 81 4 81 3 2 16 4 16 2 5 32 2 4 4 2 5 32 7.1 – Radicals nth Roots An nth root of any number a is a number whose nth power is a. Examples: 5 1 1 4 16 Non-real number 6 1 Non-real number 3 27 3 7.2 – Rational Exponents m n n Definition of a : a m or a m n The value of the numerator represents the power of the radicand. The value of the denominator represents the index or root of the expression. Examples: 25 4 1 3 43 2 2 x 1 7 2 27 5 25 2 8 64 7 1 3 2 x 1 2 3 27 3 7.2 – Rational Exponents m n n Definition of a : a m a or n m More Examples: 1 27 2 2 3 1 27 3 3 2 3 3 2 3 1 27 3 2 1 729 1 9 or 1 27 2 3 2 1 27 1 3 3 2 3 2 27 3 1 2 3 2 2 1 9 7.2 – Rational Exponents Definition of a mn : 1 a m 1 or n n a or m 25 x 2 1 25 1 2 1 3 x 2 3 3 1 25 1 5 1 1 x 2 or x 3 a n Examples: 12 1 2 m 7.2 – Rational Exponents Use the properties of exponents to simplify each expression 4 x x x x 4 3 3 3 x 5 x 1 10 81x 12 5 2 x x 3 3 1 5 10 3x 2 4 5 3 3 2 x x x 2 1 3 12 x 1 x3 3 6 1 10 10 3x 4 9 x 5 10 x 1 2 2 x 1 8 12 12 x 9 12 x 3 4 7.3 – Simplifying Rational Expressions Product Rule for Square Roots If a and b are real numbers, then a b a b Examples: 4 10 4 10 2 10 40 7 75 7 25 3 7 25 3 7 5 3 35 3 8 4 x x 16 x x 16x 17 3 16 16x 8 2 x x 2 x 17 3 15 2 5 3 2x 2 7.3 – Simplifying Rational Expressions Quotient Rule for Square Roots If a and b are real numbers and b 0, then Examples: 16 4 16 81 81 9 45 49 45 49 2 25 95 3 5 7 7 2 2 5 25 a a b b 7.3 – Simplifying Rational Expressions If a and b are real numbers and b 0, then 15 3 35 3 5 3 3 90 2 9 10 2 a a b b 5 9 25 9 2 5 3 5 2 2 7.3 – Simplifying Rational Expressions Examples: x 11 x x x5 x 10 18x 9 2x 3x 4 27 8 x 7 7y 25 4 27 x 8 93 x 7 y y 6 25 8 y 3 2 2 3 3 4 x 7y 5 7.3 – Simplifying Rational Expressions Examples: 3 88 3 3 2 11 8 11 3 3 3 3 10 10 3 27 27 23 3mn n 27m n 3 m n n 3 7 3 3 10 3 81 81 3 8 8 3 3 3 6 27 3 2 33 3 2 7.3 – Simplifying Rational Expressions One Big Final Example 5 5 64x y z 12 4 18 32 2x10 x 2 y 4 z15 z 3 2 3 5 2x z 2 4 3 2x y z 7.4 – Adding, Subtracting, Multiplying Radical Expressions Review and Examples: 5x 3x 8x 12 y 7 y 5y 6 11 9 11 15 11 7 3 7 2 7 7.4 – Adding, Subtracting, Multiplying Radical Expressions Simplifying Radicals Prior to Adding or Subtracting 27 75 9 3 25 3 3 3 5 3 8 3 3 20 7 45 3 4 5 7 9 5 3 2 5 7 3 5 6 5 21 5 15 5 36 48 4 3 9 6 16 3 4 3 3 6 4 3 4 3 3 38 3 7.4 – Adding, Subtracting, Multiplying Radical Expressions Simplifying Radicals Prior to Adding or Subtracting 9 x 36 x x 4 3 3 3x 6 x x x x 2 2 2 2 3 x 5x x 3x 6 x x x x 2 10 3 81 p 6 3 24 p 6 10 3 27 3 p 6 3 8 3 p 6 10 3 p 23 3 2p 23 3 28 p 30 p 23 3 23 3 2p 23 3 7.4 – Adding, Subtracting, Multiplying Radical Expressions If a and b are real numbers, then a b a b 7 7 49 7 5 2 10 6 3 18 9 2 3 2 10 x 2 x 20x2 4 5x2 2x 5 7.4 – Adding, Subtracting, Multiplying Radical Expressions 7 7 7 7 3 7 3 49 21 7 21 5x x 3 5 5x 3 25x x 5 3 5 x 2 x 5 15 x x 5 x 3 x2 3x 5x 15 x 2 3x 5x 15 7.4 – Adding, Subtracting, Multiplying Radical Expressions 36 3 6 2 5x 4 9 6 3 6 3 36 3 36 33 5x 4 5x 4 25x 4 5x 4 5x 16 2 5 x 8 5 x 16