Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 Order Statistics for Negative Binomial Distribution Tabark Ayad Ali Hussain Ahmed Ali University of Babylon /College of Education for Pure Sciences [email protected] Abstract In this paper, we considers the order statistics from negative binomial distribution .which have moment of all positive orders. We take as example for ๐ฅ3 to find the mean and variance. We define aformula for B . The incomplete beta function of Negative binomial distribution is ๐ผ1โ๐ต(๐ฅ) (๐, ๐), But The incomplete beta function of binomial distribution is ๐ผ๐ต(๐ฅ) (๐, ๐ โ ๐ + 1). The purpose of this paper is to study the distribution of ๐ฅ๐ and ๐ = ๐ฅ๐ โ ๐ฅ๐ (๐ฅ๐ , ๐ฅ๐ , ๐ > ๐) . The results are obtained here can be compared to those for a continuous variate. Keywords :Order Statistics, Negative Binomial, Joint Distribution, Mean, Variance. โซุงูุฎุงูุตุฉโฌ โซ ุญูุซ ุชู ูุถุน ุตูุบโฌ. โซ ุงูุฐู ูู ุชูู ุนุฒูู ููู ุงูุฑุชุจ ุงูู ูุฌุจุฉโฌ. โซูู ูุฐุง ุงูุจุญุซ ูุงูุดูุง ุงุงูุญุตุงุกุงุช ุงูู ุฑุชุจุฉ ูุชูุฒูุน ุซูุงุฆู ุงูุญุฏูู ุงูุณุงูุจโฌ . โซ = )๐(๐ ููุฐูู ูุถุนุช ุตูุบ ูุญุณุงุจ ุฏุงูุฉ ุจูุชุง ุบูุฑ ุงููุงู ูุฉ ูุชูุฒูุนู ุซูุงุฆู ุงูุญุฏูู ุงูุณุงูุจ ูุชูุฒูุน ุฐู ุงูุญุฏููโฌ1 โซูุญุณุงุจ ุงููุณุท ูุงูุชุจุงูู ุนูุฏู ุงโฌ . R = xj โ xi (xj , xi , i > j) โซ ูุฏู ูุฐุง ุงูุจุญุซ ูู ุฏุฑุงุณุฉ ุชูุฒูุน ๐ ูโฌ. โซ ูุญุณุงุจ ุงููุณุท ูุงูุชุจุงููโฌx3 โซุงุฎุฐูุง ู ุซุงู ุจุงููุณุจุฉ ุงููโฌ . โซุงููุชุงุฆุฌ ุงูุชู ุชูุตููุง ููุง ูู ูู ุงู ุชุญุณุจ ููุฐุง ุงูู ูุถูุน ููุญุงูุฉ ุงูู ุณุชู ุฑุฉโฌ .โซ ุงูุชุจุงููโฌ,โซ ุงูุชููุนโฌ,โซ ุงูุชูุฒูุน ุงูู ุดุชุฑูโฌ,โซ ุซูุงุฆู ุงูุญุฏูู ุงูุณุงูุจโฌ,โซุงุงูุญุตุงุกุงุช ุงูู ุฑุชุจุฉโฌ:โซุงูููู ุงุช ุงูู ูุชุงุญูุฉโฌ 1. Introduction Let ๐ฅ๐ (๐ = 0,1,2, โฆ , ๐) be the number of successes in N independent trials from anegative binomial distribution with ๐ as the probability of success in each trial . Let ๐ฅ๐ be arranged in order to give ๐ฅ1 โค ๐ฅ2 โค โฏ โค ๐ฅ๐ โค โฏ โค ๐ฅ๐ The discrete variable ๐ฅ๐ ๐๐ ๐ฅ(๐) take values 1,2, โฆ (๐ = 1,2, โฆ , ๐). Table are provided giving the cumulative distribution and the expected value and the variance of ๐ฅ(1) and ๐ฅ๐ . joint distribution of ๐ฅ(๐) and ๐ฅ(๐) (๐ < ๐) is obtained . The distribution of ๐ฅ๐ โ ๐ฅ๐ (๐ > ๐) is also derived .Given observations, we can see that there are ๐ (๐ โ ๐ + 1) different and mutually exclusive cases of the type ๐ โ 1 โ ๐ observations below ๐ฅ๐ , (๐ + ๐ + 1) observations of ๐ฅ๐ and ๐ โ ๐ โ ๐ observations above ๐ฅ๐ , with respective probabilities ๐(๐ฅ๐ โ ๐), ๐(๐ฅ๐ ) ๐๐๐ 1 โ ๐(๐ฅ๐ ) , (๐ = 0,1,2, โฆ ๐ โ 1 ๐๐๐ ๐ = 0,1,2, โฆ , ๐ โ ๐). 2.Literature Review The negative binomial distribution (NBD) is one of the most useful probability distributions and has been successfully employed to model a variety of natural phenomena. It has been used to construct useful models in many substantive fields: in accident statistics (Greenwood and Yule(1920) , Arbous and Kerrich(1951), Weber( 1971)) . in birth-death processes (Furry,1937) ; Kendall 1949) .in psychology (Sichel, 1951). The first work in actuarial literature that has come to my attention involving the negative binomial was by Keffer in 1929 in connection with a group life experience rating plan. He developed the theory in relationship to the relative dispersion of loss ratios about their true mean. 475 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 A. L. Bailey first utilized the negative binomial in the Proceedings of the Casualty Actuarial Society in 1950. The distribution resulting from repeated trials of this experiment will be in thc form of a negative binomial distribution . This model is suggested by the mathematical development of Feller (1957) . Creel and Loomis (1990, 1991) estimated truncated and untruncated Poisson and negative binomial models for California deer hunting and derived welfare measures from these models see (Miaou, 1994; ; Hadi et al., 1995; Shankar et al.(1995) Poch and Mannering, (1996). In addition, zero-inflated Poisson and zeroinflated negative binomial models were also employed to analyze accident frequencies by Shankar et al. (1997) . also employed to analyze accident frequencies by Lee and Mannering (2002) and Lee et al. (2002) . In biology (Anscombe(1950); Bliss and Fisher (1953); Anderson (1965); Boswell and Patil ( 1970); Elliot (1977) . In ecology (Martin and Katti (1965); Binn (1986); White and Bennetle ( 1996)). in entomology (Wilson and Room( 1983) . In epidemiology (Byers et al. (2003) . in information sciences (Bookstein( 1997) . In meterology (Sakamato ( 1972) . In addition, many other physical and biological applications have been described by ( Biggeri (1998) and Eke et al. (2001) . 3. Moment of order statistics Gupta ,S.Shanti .and S. Panchspakesan(1967) "Department of Statistics Division of Mathematical Sciences Mimeograph Series No. 120" ๐โ1 ๐ฅ ) ๐ (1 โ ๐)๐โ๐ฅ , ๐ฅโ1 ๐ = ๐ฅ, ๐ฅ + 1, โฆ , ๐ฅ > 0 Where ๐๐(๐ฅ) probability density function of Negative binomial distribution. ๐๐(๐ฅ) = ๐(๐ฅ) โก ๐(๐; ๐, ๐ฅ) = ( ๐ ๐ต(๐ ) = โ ๐(๐ฅ) . ๐ฅ=๐ ๐ต(๐, ๐) = (๐ค(๐)๐ค(๐))/(๐ค(๐ + ๐) ) ๐ 1 ๐ผ๐ (๐, ๐) = โซ ๐ข๐โ1 (1 โ ๐ข)๐โ1 ๐๐ข . ๐ต(๐, ๐) 0 Let ๐๐ (๐ฅ) be the probability that the ith order statistic ๐ฅ(๐) is equal to ๐ฅ and let ๐๐ (๐ฅ) = ๐{๐ฅ(๐) โค ๐ฅ} be the ๐. ๐. ๐. ๐๐ ๐ฅ(๐) . ๐โ1 ๐โ๐ ๐๐ (๐ฅ) = โ โ ๐=0 ๐=0 ๐! {๐ต(๐ฅ โ 1)}๐โ1โ๐ {๐(๐ฅ)}๐+๐+1 {1 โ ๐ต(๐ฅ)}๐โ๐โ๐ (๐ โ 1 โ ๐)! (๐ + ๐ + 1)! (๐ โ ๐ โ ๐)! Where ๐ต(๐ฅ โ 1) = 0 ๐๐๐ ๐ฅ = 0 . This can be rewritten as ๐ต(๐ฅ) ๐ ๐๐ (๐ฅ) = ๐ ( ) ๐ โซ ๐๐โ1 (1 โ ๐)๐โ1 ๐๐ ๐ต(๐ฅโ1) = ๐ผ1โ๐ต(๐ฅ) (๐, ๐) โ ๐ผ1โ๐ต(๐ฅโ1) (๐, ๐). Further 476 (3.2) (3.1) Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 ๐ต(๐ฅ) ๐ ๐๐ (๐ฅ) = ๐ ( ) โซ ๐๐โ1 (1 โ ๐)๐โ1 ๐๐ = ๐ผ1โ๐ต(๐ฅ) (๐, ๐) (3.3) ๐ 0 ๐โ1 ๐ธ(๐ฅ(๐) ) = โ[1 โ ๐๐ (๐ฅ)] (3.4) ๐ฅ=0 ๐โ1 ๐ธ(๐ฅ 2 (๐) ๐โ1 ) = 2 โ ๐ฅ[1 โ ๐๐ (๐ฅ)] + โ[1 โ ๐๐ (๐ฅ)] ๐ฅ=0 (3.5) ๐ฅ=0 ๐ฃ๐๐(๐ฅ๐ ) = ๐ธ(๐ฅ 2 (๐) ) โ [๐ธ(๐ฅ(๐) )] 2 (3.6) Example 1 let ( ๐ฅ0 , ๐ฅ1 , ๐ฅ2 , ๐ฅ3 ) be order statistic , i=3 , ๐ = ๐ = 2 , ๐ฅ3 = 3 , find the mean and veriance of ๐ฅ3 ? when ๐ = 3 , ๐ = 4 , ๐ = 2 . where ๐ = ๐๐(๐ฅ๐ ) + (๐ฅ๐ โ 1) 2 1 1 2 1 ๐(๐ฅ3 = 3) = ( ) ( ) ( ) = 0 2 2 8 1 1 1 1 ๐(๐ฅ3 โ 1) = ๐(2) = ( ) ( ) ( ) = 0 2 2 4 1 1 1 + = 8 4 2 ๐ = 2โ ๐ต(๐ฅ) ๐ ๐(๐ฅ) = ๐ ( ) โซ ๐๐ (1 โ ๐)๐โ๐ ๐๐ ๐ ๐ฅ 0 ๐ต(๐ฅ) = โ ๐๐ (1 โ ๐)๐โ๐ , ๐ = 0,1,2,3 ๐=๐ 1 5 13 ๐ต(0) = 0 , ๐ต(1) = , ๐ต(2) = , ๐ต(3) = 2 8 8 ๐3 (0) = 0 1 2 3 1 3 1 0 3 ๐3 (1) = 3 ( ) โซ ( ) ( ) ๐๐ = 3 2 2 16 0 5 8 3 1 3 1 0 15 (2) ๐3 = 3 ( ) โซ ( ) ( ) ๐๐ = 3 2 2 64 0 13 8 3 1 3 1 0 39 ๐3 (3) = 3 ( ) โซ ( ) ( ) ๐๐ = 3 2 2 64 0 477 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 4โ1 ๐ธ(๐ฅ3 ) = โ [1 โ ๐3 (๐ฅ)]. ๐ฅ=0 = [1 โ ๐3 (0)] + [1 โ ๐3 (1)] + [1 โ ๐3 (2)] + [1 โ ๐3 (3)] . 3 15 39 13 49 25 = 1 + (1 โ ) + (1 โ ) + (1 โ ) = 1 + ( ) + ( ) + ( ) 16 64 64 16 64 64 64 + 52 + 74 190 = 64 64 ๐โ1 ๐ธ( ๐ฅ 2 (3) ) ๐โ1 = 2 โ ๐ฅ [1 โ ๐3 (๐ฅ)] + โ[1 โ ๐3 (๐ฅ)] ๐ฅ=0 3 โ ๐ฅ [1 โ ๐3 (๐ฅ)] = 0. [1] + 1. [ ๐ฅ=0 ๐ฅ=0 13 49 75 52 + 98 + 75 225 + + ]= = 64 32 64 64 64 ๐ฌ (๐๐ (๐)) = 2. 225 190 640 + = 64 64 64 ๐๐๐ (๐๐ ) = ๐ธ(๐ฅ 2 (3)) โ [๐ธ(๐ฅ3 )]2 = 640 36100 4860 โ = 64 4096 4096 4 . Joint distribution of ๐(๐) ๐๐๐ ๐(๐) , ๐ < ๐ BIGGERI, A. (1998 ), FISHER,R.A. (1941), Gupta ,S.Shanti .and S. Panchspakesan(1967) Let ๐๐,๐ (๐ฅ, ๐ฆ)(๐ < ๐) be the probability that x(i) is equal to ๐ฅ and ๐ฅ(๐) is equal to y and let ๐๐,๐ (๐ฅ, ๐ฆ) = ๐(๐ฅ(๐) โค ๐ฅ, ๐ฅ(๐) โค ๐ฆ). If ๐ฅ โฅ ๐ฆ , ๐๐,๐ (๐ฅ, ๐ฆ) = ๐(๐ฅ(๐) โค ๐ฆ) ๐ต(๐ฆ) ๐ = ๐ ( ) โซ ๐ข๐โ1 (1 โ ๐ข)๐โ1 ๐๐ข ) ๐ (4.1) 0 By repeated application of the results ๐ ๐ ๐+๐ โ1 ๐ 1 โ( ) ๐ (๐ โ ๐)๐ = โซ ๐ข๐โ1 (1 โ ๐ข)๐โ1 ๐๐ข ๐ ๐ต(๐, ๐) ๐ =๐ 0 and ๐ ๐ ๐+๐ โ1 ๐ 1 โ( ) ๐ (๐ โ ๐)๐ = โซ ๐ข๐ (1 โ ๐ข)๐โ1 ๐๐ข ๐ ๐ต(๐ + 1, ๐) ๐ =0 0 478 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 Where 0 โค ๐ < 1 and ๐ < ๐ ; we obtain ๐๐,๐ (๐, ๐) 1 ๐ต(๐ฅ) ๐ต(๐ฅ) ๐! ๐โ๐โ1 ๐ ๐ข๐โ1 (1 โ ๐ข)๐โ1 ๐๐ข โ โซ ๐๐ฃ โซ ๐๐โ1 ( ๐ฃ โ ๐) = ๐( ) โซ (๐ โ 1)! (๐ โ ๐ โ 1)! (๐ โ 1)! ๐ ๐ต(๐ฆ) 0 0 (1 โ ๐ฃ)๐โ1 ๐๐ (๐. ๐) ๐ = ๐ง๐(๐ฅ๐ ) + ๐(๐ฅ๐ โ 1) , ๐ฃ = ๐(๐ฅ๐ ) โ ๐ฆ ๐(๐ฅ๐ ) we get the relation 1 ๐ต(๐ฅ) ๐! โซ ๐๐ฃ โซ0 ๐๐โ1 (๐ฃ (๐โ1)!(๐โ๐โ1)!(๐โ๐)! ๐ต(๐ฅ) โ ๐)๐โ๐โ1 (1 โ ๐ฃ)๐โ1 ๐๐ (4.3) ๐ต(๐ฅ) ๐ต(๐ฅ) ๐ ๐ ๐โ1 ๐โ1 = ๐( ) โซ ๐ข (1 โ ๐ข) ๐๐ข โ ๐ ( ) โซ ๐ข ๐โ1 (1 โ ๐ข)๐โ1 ๐๐ข ๐ ๐ 0 0 = ๐ผ1โ๐ต(๐ฅ) (๐, ๐) โ ๐ผ1โ๐ต(๐ฅ) (๐, ๐) ๐ (4.4) ๐ ๐ธ(๐ฅ(๐) ๐ฅ(๐) ) = โ โ ๐ฅ๐ฆ ๐๐,๐ (๐ฅ, ๐ฆ) ๐ฅ=0 ๐ฆ=0 ๐โ1 ๐ ๐ = โ ๐ฅ 2 ๐๐,๐ (๐ฅ, ๐ฅ) + โ โ ๐ฅ๐ฆ ๐๐,๐ (๐ฅ, ๐ฆ) ๐ฅ=0 (4.5) ๐ฅ=0 ๐ฆ=๐ฅ+1 so ๐ ๐โ1 ๐ ๐๐๐ฃ(๐ฅ(๐) , ๐ฅ(๐) ) = โ ๐ฅ 2 ๐๐,๐ (๐ฅ, ๐ฅ) + โ โ ๐ฅ๐ฆ ๐๐,๐ (๐ฅ, ๐ฆ) ๐ฅ=0 ๐โ1 ๐ฅ=0 ๐ฆ=๐ฅ+1 ๐โ1 โ{โ[1 โ ๐๐ (๐ฅ)]} {โ[1 โ ๐๐ (๐ฅ)]} (๐. ๐) ๐ฅ=0 ๐ฅ=0 5 . Distribution of ๐๐,๐ = ๐ฟ(๐) โ ๐ฟ(๐) (๐ > ๐) BIGGERI, A. (1998 ), FISHER,R.A. (1941), Gupta ,S.Shanti .and S. Panchspakesan(1967) ๐๐,๐ represents a generalized range and can take values 0,1, โฆ . . , ๐ .for ๐ โฅ 0 , ๐(๐๐,๐ = ๐) = ๐! ๐โ1 (๐ โ๐โ๐ โ ๐)๐โ๐โ1 (1 โ ๐)๐โ1 ๐๐ฃ๐๐ (5.1) ๐=0 (๐โ1)!(๐โ๐โ1)!(๐โ1)! โซ โซ๐ด ๐ Where A is the region given by ๐ฃโฅ๐ { ๐ต(๐) โฅ ๐ โฅ ๐ต(๐ โ 1) ๐ต(๐ + ๐) โฅ ๐ฃ โฅ ๐ต(๐ + ๐ โ 1) 479 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 This can be rewritten as ๐{๐๐,๐ = ๐} ๐ต(๐) ๐ ๐! โ (๐ โ 1)! (๐ โ ๐ โ 1)! (๐ โ 1)! ๐=0 = ๐โ๐ ๐ต(๐) โซ ๐๐ โซ ๐๐โ1 (๐ โ ๐)๐โ๐โ1 (1 โ ๐)๐โ1 ๐๐ฃ , ๐ = 0 (๐. ๐) ๐ต(๐โ1) ๐ต(๐) ๐! โ (๐ โ 1)! (๐ โ ๐ โ 1)! (๐ โ 1)! ๐=0 ๐ โซ ๐๐ ๐ต(๐โ1) ๐ต(๐+๐) ๐๐โ1 (๐ โ ๐)๐โ๐โ1 (1 โ ๐)๐โ1 ๐๐ฃ , ๐ > 0 ) โซ ๐ต(๐+๐โ1) (๐. ๐) { so ๐ ๐โ๐ ๐ธ(๐๐,๐ ) = โ ๐ โ ๐=1 ๐=0 ๐ต(๐+๐) ๐ต(๐) โซ ๐๐ ๐ต(๐โ1) ๐! (๐ โ 1)! (๐ โ ๐ โ 1)! (๐ โ 1)! (5.4) ๐๐โ1 (๐ โ ๐)๐โ๐โ1 (1 โ ๐)๐โ1 ๐๐ฃ โซ (5.5) ๐ต(๐+๐โ1) But we also know that ๐ธ(๐๐,๐ ) = ๐ธ(๐(๐) ) โ ๐ธ(๐(๐) ) ๐ต(๐ฅ) ๐โ1 ๐โ1 ๐ต(๐ฅ) ๐ฅ=0 0 ๐ ๐ = โ ๐ ( ) โซ ๐๐โ1 (1 โ ๐)๐โ1 ๐๐ โ โ ๐ ( ) โซ ๐ ๐โ1 (1 โ ๐)๐โ1 ๐๐ ๐ ๐ ๐ฅ=0 ๐โ1 0 = โ[๐ผ1โ๐ต(๐ฅ) (๐, ๐) โ [๐ผ1โ๐ต(๐ฅ) (๐, ๐)] (5.6) ๐ฅ=0 (5.5) and (5.6) lead to the relation ๐ ๐โ๐ โ โ๐ ๐=1 ๐ต(๐) โซ ๐๐ ๐! โ (๐ โ 1)! (๐ โ ๐ โ 1)! (๐ โ 1)! ๐=0 ๐ต(๐+๐) โซ ๐๐โ1 (๐ โ ๐)๐โ๐โ1 (1 โ ๐)๐โ1 ๐๐ฃ ๐ต(๐โ1) ๐ต(๐+๐โ1) ๐โ1 = โ[๐ผ1โ๐ต(๐ฅ) (๐, ๐) โ [๐ผ1โ๐ต(๐ฅ) (๐, ๐)] (5.7) ๐ฅ=0 6. Conclusions A . Since ๐(๐) = 1 , ๐ ๐โ1 ๐ธ(๐ฅ๐ ) = โ ๐ฅ๐ ๐ โ (๐ฅ๐ ) = ๐ โ โ ๐ โ (๐ฅ๐ ) ๐ฅ๐ =0 ๐ฅ๐ =0 480 Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015 where ๐ โ (๐ฅ๐ ) is defined by ๐ต(๐ฅ) ๐๐ (๐ฅ) = ๐(๐๐) โซ0 ๐๐โ1 (1 โ ๐)๐โ1 ๐๐ = ๐ผ1โ๐ต(๐ฅ) (๐, ๐) . Hence, we have ๐โ1 ๐ธ(๐ฅ๐ ) = โ {1 โ ๐ โ (๐ฅ๐ )} ๐ฅ๐ =0 For the variance of ๐ฅ๐ , we have ๐ ๐โ1 ๐ธ(๐ฅ๐ 2 ) = โ ๐ฅ๐ 2 ๐ โ (๐ฅ๐ ) = ๐ 2 โ โ (2๐ฅ๐ + 1)๐ โ (๐ฅ๐ ) ๐ฅ๐=0 ๐ฅ๐ =0 That is, ๐โ1 ๐ธ(๐ฅ๐ 2) = 2 โ ๐ฅ๐ {1 โ ๐ โ (๐ฅ๐ )} + ๐ธ(๐ฅ๐ ) ๐ฅ๐=0 Hence, the variance of ๐ฅ๐ , is ๐โ1 ๐(๐ฅ๐ ) = 2 โ ๐ฅ๐ {1 โ ๐ โ (๐ฅ๐ )} + ๐ธ(๐ฅ๐ ){1 โ ๐ธ(๐ฅ๐ )} ๐ฅ๐=0 B . The incomplete beta function of Negative binomial distribution is ๐ฐ๐โ๐ฉ(๐) (๐, ๐ด) But The incomplete beta function of binomial distribution is ๐ผ๐ต(๐ฅ) (๐, ๐ โ ๐ + 1) 7. References ANDERSON, F.S. 1965: โThe negative binomial distribution and the sampling of insect populationโ, Proceedings of XII International Conference on Entomology, 395-402. ANSCOMBE, F.J. 1950: โSampling theory of negative binomial and logarithmic series distributionsโ, Biometrika, 37, 358-382. BIGGERI, A. 1998: โNegative binomial distributionโ, In: Encyclopedia of Biostatistics, 4, 2962-2967. (Eds. P. Armitage and T. Colton). John Wiley: New York. BINNS, M. R. 1986: โBehavioral dynamics and the negative binomial distributionโ, Oikos, 47, 315-318. BLISS, C. I. and R.A. FISHER 1953: โFitting the negative binomial distribution to biological data and note on the efficient fitting of negative binomialโ, Biometrics, 9, 176-200. JOHNSON, N.L.; S. KOTZ and A. KEMP 1992: Discrete Distributions, Second edition. John Wiley: New York. Griffiths, R. C. and R. K. Milne 1987. A class of infinitely divisible multivariate negative binomial distributions. J. Multivariate Anal. 22, 13โ23. Gupta ,S.Shanti.and S. Panchspakesan1967 ,"order statistics Arising from Independent Binomial populations " , Department of Statistics Division of Mathematical Sciences Mimeograph Series No. 120 . 481