Download Random_Variables

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
TELECOMMUNICATIONS
Dr. Hugh Blanton
ENTC 4307/ENTC 5307
Random Variables
Random Variables
• Many random phenomena have outcomes that
are real numbers,
• e.g., the voltage, v(t) at time, t, across a noisy
resistor, number of people on a New York to
Chicago train, etc.
• In engineering, technology, and science; we are
generally interested in numerical outcomes.
• Even when the universal set, S, in not numerical,
we may apply a mapping to convert the outcomes
to real numbers.
Dr. Blanton - ENTC 4307 - Random Variables
3
Definition of a Random Variable:
• A random variable is a number
labeling the outcomes of a
probabilistic experiments.
• X can be considered to be a function
that maps all the elements in S into
points on the real line or some parts
thereof.
Dr. Blanton - ENTC 4307 - Random Variables
4
X:SR
Universal Set, S
X(.)
Mapping
Domain
Range
R (Real numbers)
Conditions:
The mapping is single-valued.
The set {X  x} is an event. This is the set of random
variable X taking values equal or less than x in a trial
chance experiment, E.
Dr. Blanton - ENTC 4307 - Random Variables
5
Basic Definitions
• Discrete Random Variable: A random
variable that has a countable number
of elements in the range.
• Continuous Random Variable: A
random variable that has an
uncountably infinite number of
elements in the range.
Dr. Blanton - ENTC 4307 - Random Variables
6
Random Variables
• The mapping (function) that assigns a
number to each outcome is called a
random variable.
• If the random variable is denoted by
X, then the distribution function F(xo)
is defined by
F ( xo )  Pr{ X  xo }
Dr. Blanton - ENTC 4307 - Random Variables
7
Example 1:
Suppose you match coins with a friend, winning $1 if two
coins match and losing $1 if the coins do not match.
Example 1: S={HH, HT, TH, TT}
s1
s2
s3
s4
Random Variable: X(s1) = X(s4) = +1
X(s2 ) = X(s3) = -1
Thus,
X
1
-1
-1
1
S
HH
HT
TH
TT
 Single-valued mapping
Dr. Blanton - ENTC 4307 - Random Variables
8
In this case, a random variable takes on only a finite
number of values (+1, -1), satisfying property c.
If we let x = 0.6, then X  0.6, if s = HT or TH, i.e., the
event {HT, TH}. Thus x = 0.6 determines an event.
Let x = -10, the {X  -10} = Ø
Let x > 1, then {X  x} = S
Thus, for every x, we have an event and b is satisfied.
Dr. Blanton - ENTC 4307 - Random Variables
9
Basic Definitions
• Discrete Random Variable: A random variable
that has a countable number of elements in the
range.
• Continuous Random Variable: A random
variable that has an uncountably infinite number
of elements in the range.
• Probability Assignment: There are two standard
forms for probability assignment either using
Cumulative Distribution Function (CDF) or
Probability Distribution Function (PDF).
Dr. Blanton - ENTC 4307 - Random Variables
10
Cumulative Distribution Function (CDF)
Let X : a random variable with a particular value, x, then,
FX(x) = Pr[X  x]
Thus, the CDF is the probability of event {X  x}, i.e., the
random variable, X, takes on a value equal to or less
than x.
Dr. Blanton - ENTC 4307 - Random Variables
11
Example 2
Experiment: Observing the parity bit in a word in
computer memory.
Bit “ON”  X = 1
Bit “OFF”  X = 0
The OFF state has a probability q and thus the ON state
has a probability of (1-q).
Sample space, S = {OFF, ON}
Plot FX(x)
Dr. Blanton - ENTC 4307 - Random Variables
12
Example 2
(1) For x  0, event X  x    FX ( x)  0
(2) For 0  x  1, event X  x is equivalent to the event
OFF
Thus, FX ( x)  PX  0  q
(3) For x  1, event X  x  OFF , ON   S
Thus, FX ( x)  1
FX(x)
Prob. of event
{X=1}
Prob. of event
{X=0}
q
q
Dr. Blanton - ENTC 4307 - Random Variables
x
13
Example 3
Determine CDF for a single toss of a die.
Dr. Blanton - ENTC 4307 - Random Variables
14
Example 3
S  1,2,3,4,5,6
For x  1
FX ( x)  Pr[ X  x]  0
1 x  2
FX ( x)  Pr[ X  x]  1/ 6
2 x3
FX ( x)  Pr[ X  x]  2 / 6
5 x 6
x6
FX ( x)  Pr[ X  x]  5 / 6
FX ( x)  Pr[ X  x]  1
Dr. Blanton - ENTC 4307 - Random Variables
15
1
FX(x)
1/6
1
6
Dr. Blanton - ENTC 4307 - Random Variables
x
16
Example 4
A random variable has a PDF given by
FX(x) = 0
= 1-e-2x
- < x  0
0<x
Find the probability that X > 0.5.
Find the probability that X  0.25
Find the probability that 0.3  X  0.7
Dr. Blanton - ENTC 4307 - Random Variables
17
Example 4
(a) PrX  0.5  1  Pr[ X  0.5]  1  FX (0.5)
1
 1  (1  e )  0.3679
0.5


(b) Pr X  0.25  FX (0.25)  (1  e )  0.3935
(c) Pr0.3  X  0.7  FX (0.7)  FX (0.3)
 (1  e 1.4 )  (1  e 0.6 )  0.3022
Dr. Blanton - ENTC 4307 - Random Variables
18
1
FX(x)
x
Dr. Blanton - ENTC 4307 - Random Variables
19
Example 5
A random variable has PDF given by:
FX(x) = A(1-e-(x-1))
=0
1< x < 
-<x1
Find A for a valid CDF
FX(x) = ?
Pr[2 < X < ] = ?
Pr[1 < X  3] = ?
Dr. Blanton - ENTC 4307 - Random Variables
20
Example 5
(a) Since FX() = 1,
 A [1
– e-]  A = 1
(b) FX(2) = [1 – e-1] = 0.6321
Pr[2 < X <  ] = FX() - FX(2) = 1 - 0.6321 = 0.3679
(c) Pr[1 < X  3 ] = FX(3) - FX(1)
= (1 – e-2) - (1 – e0) = 0.8647
Dr. Blanton - ENTC 4307 - Random Variables
21
CDF or Discrete Random Variable:
A discrete random variable , X, taking on one of the
countable set of possible values x1, x2,  with
probability Pr[X = xk],  k[1,N] forming a stair-step CDF
with amplitude of each step being Pr[X = xk], k = 1, 2,
. Thus,
N
FX ( x) 
where,
 Pr[ X  x ]u( x  x )
k
k 1
k
x0
x0
1
u ( x)  
0
Or more compactly,
N
FX ( x) 
 Prx u( x  x )
k
k
k 1
Dr. Blanton - ENTC 4307 - Random Variables
22
Example 6
A bus arrives at random in (0, T], i.e., 0 < t  T. Let X be
a random variable representing time of arrival, then
clearly,
FX(t) = 0
FX(T) = 1
for t  0
impossible event
certain event
Bus is uniformly likely to come at any time within (0,T].
t0
0
FX(t)
Then

FX (t )  t / T
1

0t T
t T
1
0
T
t
A continuous random variable has a continuous CDF.
Dr. Blanton - ENTC 4307 - Random Variables
23
Probability Density Function (PDF)
A PDF is defined as
dFX ( x)
f x ( x) 
dx
Properties of PDF: If fX(x) exists, then
x
(1)
FX ( x) 

f X ( )d
i.e., CDF

(2) Pr[a  x  b]  FX (b)  FX (a)
b



a
f X ( )d 

b
f X ( )d 

Dr. Blanton - ENTC 4307 - Random Variables

f X ( )d
a
24
(3) If a = - and b = , then



f X ( )d  FX ()  FX ()  1
(4) f X ( x)  0
decreasing
  x  
since CDF is non-
From (2), the probability that X takes on values
between x and x + x is
Pr[ x  X  x  x]  FX ( x  x)  FX ( x)
Dr. Blanton - ENTC 4307 - Random Variables
25
x  x
FX ( x  x)  FX ( x) 

f X ( )d  f X ( x)x
x
Dr. Blanton - ENTC 4307 - Random Variables
26
Generalization
For discrete random variables, the PDF has a general
N
form of
f X ( x) 
 Pr( x ) ( x  x )
k
k
k 1
Example 8: For a random variable, X, we have
 Ax(1  x)
f X ( x)  
0
0  x 1
otherwise
(a)Find A so that this function is a valid PDF.
(b) Find Pr[1/2  x 1].
Dr. Blanton - ENTC 4307 - Random Variables
27
Example 8

(a)

1

f X ( x)dx  1  Ax(1  x)dx  1

0
1
1

A ( x  x 2 )dx  A ( x)dx  x 2 dx 


0
0
0

1


1
x
x 
A A A
 A       1
 2 3 0 2 3 6
2
A6

3
Dr. Blanton - ENTC 4307 - Random Variables
28
Example 8 (cont.)
1
1

(b) Pr   x  1  6 x(1  x)dx
2
 1

2
1
1
 1

2
3 1

 
  6x 6x 
2
2

 6 ( x  x )dx   6 xdx  x dx   

3 1
1
 1
  2
1
2
2
 2
  2




 3x  2 x
2

3 1
1
2

3
2
1 1
 3   2   1 
4
8
2 2
Dr. Blanton - ENTC 4307 - Random Variables
29
Related documents