Download PAP 514 Frontiers of Modern Physics July 31 – Aug 25, 2006

Document related concepts
no text concepts found
Transcript
Graduate Lecture Series
29 June – 3 July, 2009
Quantum Physics
Underlying
Modern Technology
Prof Ngee-Pong Chang
Lecture 1
Quantum Physics Overview
NanoScience
A SCANNING microscope image of platinum-lace
nanoballs. Liposomes aggregate, providing a foamlike
template for a platinum sheet to grow.
5 x 5 mm image
50 nm Z scale
Nano-scale Tic-Tac-Toe scratched into polycarbonate
Line widths are ~ 40 nm
Quantum Dots
10-6 m
Max Planck
1858 - 1947
A plaque at Humboldt University, Berlin,
commemorating Max Planck as "discoverer of
the elementary quantum of action h," who
"taught in this building" from 1889 to 1928
Old-fashioned Fireplace
Progress of
Technology
:
Log in the
Fireplace
Replacing
the real &
messy
with
the
clean &
convenient
Superlog
Blackbody Radiation
λmax dependence on T
Wien’s Law 1893
1864 - 1928
Rayleigh-Jeans Law 1900
1842 - 1919
1877 - 1046
Birth of Quantum Physics
M. Planck,
Annalen der Physik,
vol 4, 553 (1901)
Blackbody Radiation
What is quantized ?
Ideal Blackbody
Standing Waves in a Cavity
Polarization
vector
2 Polarization states
Standing Wave
condition
Standing Wave
Condition
or
octant
Average Energy
Boltzmann Probability
Distribution
Equipartition Theorem
Ultraviolet Catastrophe !
Rayleigh-Jeans Law 1900
1842 - 1919
1877 - 1046
Classical
Planck
Quantization
Quantum
Planck Blackbody
Radiation Formula
Birth of Quantum Physics
M. Planck,
Annalen der Physik,
vol 4, 553 (1901)
Blackbody Radiation
Relation to Wien’s
Constant
Peak Intensity condition
Wien’s Constant
Our Universe as a Blackbody
Far Infra-Red Absolute Spectrophotometer
1997
Cosmic Background Radiation
FIRAS DATA
2.7280 ± 0.0001 K BLACKBODY
What is quantized ?
Albert Einstein
1879 - 1955
Einstein’s Photon
Hypothesis (1905)
Energy
Momentum
Niels Bohr
1885 - 1962
Bohr Model of the Atom
1913
Angular Momentum
Quantization
Bohr Model of the Atom
Angular Momentum
Quantization
Bohr radius
Bohr Model of the Atom
Compton wavelength
of electron
Fine Structure
Constant
Bohr Radius
Hydrogen 1s level
rst.gsfc.nasa.gov
Einstein’s Photon
Hypothesis
Energy
Momentum
1924
Prince Louis-Victor Pierre
Raymond de Brőglie
(1892 – 1987)
W. Heisenberg
1901 - 1976
Uncertainty Principle
A convenient back-of-theenvelope way to keep
track of the energy levels
of quantum wells, and
quantum dots.
E. Schrődinger
1887 - 1961
Schrődinger Equation
Stationary State
Time-Independent Schrődinger Equation
Classical Equations of
Motion
Ehrenfest Theorem
Average Expectation Values
Paul Ehrenfest
1880 - 1933
Max Born
1882 - 1970
Double Slit
Experiment
Electron build up
over time
Ehrenfest with his students
Dieke, Goudsmit, Tinbergen, Ehrenfest, Kronig, Fermi.
George Uhlenbeck
1900 - 1988
S. Goudsmit
1902 - 1978
Note to Goudsmit by L.H. Thomas
Mar 25, 1926
Wolfgang Pauli
1900 - 1958
Pauli & Bohr & a spinning top
Dirac Equation
Non-relativistic limit
Spin-Orbit Coupling
Origin of Spin-Orbit Coupling
Electron moving in a static E field
sees a magnetic field, B :
Electron spin precesses around this B field
according to the magnetic moment
interaction
Electron orbiting
around nucleus
In electron rest frame,
nucleus orbiting around
electron
Enrico Fermi
Paul Dirac
1901 - 1954
1902 - 1984
Fermi Sea
Fermi-Dirac Distribution
Einstein
Planck
Schrodinger
1927
Dirac
Pauli
Heisenberg
Bohr
Solvay
Conf
A. Piccard, E. Henriot, P. Ehrenfest, Ed. Herzen, Th. De Donder, E. Schrödinger, E.
Verschaffelt, W. Pauli, W. Heisenberg, R.H. Fowler, L. Brillouin,
P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L. de
Broglie, M. Born, N. Bohr,
I. Langmuir, M. Planck, M. Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch. E. Guye,
C.T.R. Wilson, O.W. Richardson
Bose – Einstein Statistics
1924
1894 - 1974
1879 - 1955
Kammerlingh Onnes 1853-1926
On the Sudden Rate at Which the Resistance of Mercury Disappears
Communications of the Leiden Laboratory, 1911
Meissner Effect
1933
Robert
Ochsenfeld
Walther Meissner
1882 - 1974
Quantization of Flux