Download LTI_probability

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
LTI Systems, Probability
Analog and Digital Communications
Autumn 2005-2006
Sep 16, 2005
CS477: Analog and Digital Communications
1
Sampling

First consider modulation



Next consider sampling



Product with Cosine in time domain
Convolution with two impulses in frequency domain
Product with a train of impulses in time domain
Convolution with a train of impulses in the frequency domain
Nyquist sampling theorem


A bandlimited signal [-B, +B] can be characterized by its
samples taken every 1/(2B) seconds. i.e., 2B samples per
second
Undersampling leads to aliasing
Sep 16, 2005
CS477: Analog and Digital Communications
2
LTI Systems

Linearity
If
then
x (t )
x (t ) =
y( t ) =
P
Pn
cnx n( t )
cnG[x n( t )]
G
y( t )
y( t ) = G[x ( t )]
n

Time invariance
G[x ( t à ü)] = y( t à ü)

Linearity and Time invariance
y( t à ü) =
P
cnG[x n( t à ü)]
n
Sep 16, 2005
CS477: Analog and Digital Communications
3
Response of LTI Systems
Impulse response: h( t ) = G[î ( t )]
y( t ) = G[x ( t )] = G[x ( t ) ã î ( t )]
h R
i
1
= G
x ( ü) î ( t à ü) dü
=
=
1
R
à1
1
R
à1
x ( ü) G[î ( t à ü)]dü
x ( ü) h( t à ü) dü
à1
= x ( t ) ã h( t )
Sep 16, 2005
CS477: Analog and Digital Communications
4
Exponentials and LTI Systems
x ( t ) = ej 2ùf ct
Let
y( t ) = x ( t ) ã h( t )
1
R
=
h( ü) x ( t à ü) dü
=
à1
1
R
h( ü) ej 2ùf c(t à ü) dü
Exponentials are
eigenfunctions of
LTI systems!
à1
j 2ùf ct
= e
1
R
h( ü) eà j 2ùf cüdü
à1
= ej 2ùf ct H ( f c)
Sep 16, 2005
LTI Systems can
not generate new
frequencies!
CS477: Analog and Digital Communications
5
Hilbert Transformer


A filter introducing a constant delay of 90 degrees
to the input signal
Hilbert transform does not change the domain;
It’s merely a convolution
ú
à j
f> 0
H Q( f ) = à j sgn( f ) =
+ j
f< 0
x Q( t ) =
1
ùt
xê( t ) = x ( t ) ã hQ( t ) = x ( t ) ã ùt1
xê( t ) $ à j sgn( f ) X ( f )
Sep 16, 2005
CS477: Analog and Digital Communications
6
Random Variables


Outcomes and sample space
Random Variables

Mapping outcomes to:



Discrete numbers  Discrete RVs
Real line  Continuous RVs
Cumulative distribution function


One variable
Joint cdf
Sep 16, 2005
CS477: Analog and Digital Communications
7
Random Variables






Probability mass function (discrete RV)
Probability density function (cont. RV)
Joint pdf of independent RVs
Mean
Variance
Characteristic function

j 2ùf X
Ð( X ) = E [e
Sep 16, 2005
]=
R
j 2ùf x
e
dx (IFT of pdf)
x
CS477: Analog and Digital Communications
8
Related documents