Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
© 1998 Prentice-Hall, Inc. Statistics for Business & Economics Discrete Random Variables Chapter 4 4-1 Learning Objectives © 1998 Prentice-Hall, Inc. 1. Define random variable 2. Compute the expected value & variance of discrete random variables 3. Describe the binomial & Poisson probability distributions 4. Calculate probabilities for binomial & Poisson random variables 4-2 Thinking Challenge © 1998 Prentice-Hall, Inc. You’re taking a 33 question multiple choice test. Each question has 4 choices. Clueless on 1 question, you decide to guess. What’s the chance you’ll get it right? If you guessed on all 33 questions, what would be your grade? Pass? 4-3 Alone Group Class Random Variable © 1998 Prentice-Hall, Inc. 1. A numerical outcome of an experiment 2. May be discrete or continuous 3. Discrete random variable Countable number of values Example: Number of tails in 2 coin tosses 4. Continuous random variable Infinite number of values within an interval Example: Amount of soda in a 12 oz. can 4-4 © 1998 Prentice-Hall, Inc. Discrete Random Variables 4-5 Discrete Random Variable © 1998 Prentice-Hall, Inc. 1. 2. 3. 4. Type of random variable Whole number (0, 1, 2, 3 etc.) Obtained by counting Usually finite number of values Poisson random variable is exception () 4-6 © 1998 Prentice-Hall, Inc. 4-7 Discrete Random Variable Examples © 1998 Prentice-Hall, Inc. Discrete Random Variable Examples Experiment 4-8 Random Variable Possible Values © 1998 Prentice-Hall, Inc. Discrete Random Variable Examples Experiment Make 100 sales calls 4-9 Random Variable Possible Values © 1998 Prentice-Hall, Inc. Discrete Random Variable Examples Experiment Random Variable Make 100 sales calls # Sales 4 - 10 Possible Values 0, 1, 2, ..., 100 © 1998 Prentice-Hall, Inc. Discrete Random Variable Examples Experiment Random Variable Make 100 sales calls # Sales Inspect 70 radios 4 - 11 Possible Values 0, 1, 2, ..., 100 © 1998 Prentice-Hall, Inc. Discrete Random Variable Examples Experiment Random Variable Make 100 sales calls # Sales Inspect 70 radios 4 - 12 Possible Values 0, 1, 2, ..., 100 # Defective 0, 1, 2, ..., 70 © 1998 Prentice-Hall, Inc. Discrete Random Variable Examples Experiment Random Variable Make 100 sales calls # Sales Inspect 70 radios Answer 33 questions 4 - 13 Possible Values 0, 1, 2, ..., 100 # Defective 0, 1, 2, ..., 70 © 1998 Prentice-Hall, Inc. Discrete Random Variable Examples Experiment Random Variable Make 100 sales calls # Sales Inspect 70 radios 0, 1, 2, ..., 100 # Defective 0, 1, 2, ..., 70 Answer 33 questions # Correct 4 - 14 Possible Values 0, 1, 2, ..., 33 © 1998 Prentice-Hall, Inc. Discrete Random Variable Examples Experiment Random Variable Make 100 sales calls # Sales Inspect 70 radios 4 - 15 0, 1, 2, ..., 100 # Defective 0, 1, 2, ..., 70 Answer 33 questions # Correct Count cars at toll between 11:00 & 1:00 Possible Values 0, 1, 2, ..., 33 © 1998 Prentice-Hall, Inc. Discrete Random Variable Examples Experiment Random Variable Make 100 sales calls # Sales Inspect 70 radios Possible Values 0, 1, 2, ..., 100 # Defective 0, 1, 2, ..., 70 Answer 33 questions # Correct 0, 1, 2, ..., 33 Count cars at toll # Cars between 11:00 & 1:00 arriving 0, 1, 2, ..., 4 - 16 Discrete Probability Distribution © 1998 Prentice-Hall, Inc. 1. List of all possible [x, p(x)] pairs x = Value of random variable (outcome) p(x) = Probability associated with value 2. Mutually exclusive (no overlap) 3. Collectively exhaustive (nothing left out) 4. 0 p(x) 1 (or p(x) 0) 5. p(x) = 1 4 - 17 © 1998 Prentice-Hall, Inc. 4 - 18 Discrete Probability Distribution Example © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. 4 - 19 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. Probability Distribution Values, x Probabilities, p(x) 4 - 20 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. Probability Distribution Values, x Probabilities, p(x) © 1984-1994 T/Maker Co. 4 - 21 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. Probability Distribution Values, x Probabilities, p(x) 0 © 1984-1994 T/Maker Co. 4 - 22 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. Probability Distribution Values, x Probabilities, p(x) 0 1 © 1984-1994 T/Maker Co. 4 - 23 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. Probability Distribution Values, x Probabilities, p(x) 0 1 © 1984-1994 T/Maker Co. 4 - 24 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. Probability Distribution Values, x Probabilities, p(x) 0 1 2 © 1984-1994 T/Maker Co. 4 - 25 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. Probability Distribution Values, x Probabilities, p(x) 0 1 2 © 1984-1994 T/Maker Co. 4 - 26 1/4 = .25 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. Probability Distribution Values, x Probabilities, p(x) 0 1/4 = .25 1 2/4 = .50 2 © 1984-1994 T/Maker Co. 4 - 27 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Example Experiment: Toss 2 coins. Count # tails. Probability Distribution Values, x Probabilities, p(x) © 1984-1994 T/Maker Co. 4 - 28 0 1/4 = .25 1 2/4 = .50 2 1/4 = .25 © 1998 Prentice-Hall, Inc. Visualizing Discrete Probability Distributions 4 - 29 © 1998 Prentice-Hall, Inc. Visualizing Discrete Probability Distributions Listing { (0, .25), (1, .50), (2, .25) } 4 - 30 © 1998 Prentice-Hall, Inc. Visualizing Discrete Probability Distributions Listing { (0, .25), (1, .50), (2, .25) } 4 - 31 Table # Tails f(x) Count p(x) 0 1 2 1 2 1 .25 .50 .25 © 1998 Prentice-Hall, Inc. Visualizing Discrete Probability Distributions Listing Table { (0, .25), (1, .50), (2, .25) } p(x) .50 .25 .00 Graph x 0 4 - 32 1 2 # Tails f(x) Count p(x) 0 1 2 1 2 1 .25 .50 .25 © 1998 Prentice-Hall, Inc. Visualizing Discrete Probability Distributions Listing Table { (0, .25), (1, .50), (2, .25) } p(x) .50 .25 .00 Graph 4 - 33 1 f(x) Count p(x) 0 1 2 1 2 1 .25 .50 .25 Equation x 0 # Tails 2 n! p ( x) p x (1 p) n x x !(n x)! Summary Measures © 1998 Prentice-Hall, Inc. 1. Expected value Mean of probability distribution Weighted average of all possible values = E(X) = x p(x) 2. Variance Weighted average squared deviation about mean 2 = E[ (x (x p(x) 4 - 34 © 1998 Prentice-Hall, Inc. x p(x) Total 4 - 35 Summary Measures Calculation Table x p(x ) x p(x ) x- (x -) 2 (x -) p( x ) 2 (x -) p( x ) 2 Thinking Challenge © 1998 Prentice-Hall, Inc. You toss 2 coins. You’re interested in the number of tails. What are the expected value & standard deviation of this random variable, number of tails? © 1984-1994 T/Maker Co. 4 - 36 Alone Group Class © 1998 Prentice-Hall, Inc. Expected Value & Variance Solution* 2 x p(x) x p(x ) x- (x -) 0 .25 0 -1.00 1.00 .25 1 .50 .50 0 0 0 2 .25 .50 1.00 1.00 .25 = 1.0 4 - 37 (x -) p( x ) 2 = .50 2 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Function 4 - 38 Discrete Probability Distribution Function © 1998 Prentice-Hall, Inc. 1. Type of model 2. Representation of some underlying phenomenon Mathematical formula 3. Represents discrete random variable 4. Used to get exact probabilities 4 - 39 P (X x ) e x x! - © 1998 Prentice-Hall, Inc. 4 - 40 Discrete Probability Distribution Models © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Models Discrete Probability Distribution 4 - 41 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Models Discrete Probability Distribution Binomial 4 - 42 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Models Discrete Probability Distribution Binomial 4 - 43 Poisson © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Models Discrete Probability Distribution Binomial 4 - 44 Poisson Other © 1998 Prentice-Hall, Inc. Binomial Distribution 4 - 45 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Models Discrete Probability Distribution Binomial 4 - 46 Poisson Other © 1998 Prentice-Hall, Inc. Binomial Random Variable 1. Number of ‘successes’ in a sample of n observations (trials) 4 - 47 Binomial Random Variable © 1998 Prentice-Hall, Inc. 1. Number of ‘successes’ in a sample of n observations (trials) 2. Examples # Reds in 15 spins of roulette wheel # Defective items in a batch of 5 items # Correct on a 33 question exam # Customers who purchase out of 100 customers who enter store 4 - 48 Binomial Distribution Characteristics © 1998 Prentice-Hall, Inc. 1. Sequence of n identical trials 2. Each trial has 2 outcomes ‘Success’ (desired outcome) or ‘failure’ 3. Constant trial probability 4. Trials are independent 5. Two different sampling methods Infinite population with replacement Finite population without replacement 4 - 49 © 1998 Prentice-Hall, Inc. Binomial Probability Distribution Function nI F p( x ) GJp q Hx K x n x n! x n x p (1 p) x !(n x )! p(x) = Probability of x ‘successes’ in n trials n = Sample size p = Probability of ‘success’ x = Number of ‘successes’ in sample (x = 0, 1, 2, ..., n) 4 - 50 © 1998 Prentice-Hall, Inc. 4 - 51 Binomial Distribution Characteristics © 1998 Prentice-Hall, Inc. Binomial Distribution Characteristics Mean E ( x ) np np (1 p) 4 - 52 © 1998 Prentice-Hall, Inc. Binomial Distribution Characteristics Mean E ( x ) np Standard Deviation np (1 p) 4 - 53 © 1998 Prentice-Hall, Inc. Binomial Distribution Characteristics Mean E ( x ) np P(X) .6 .4 .2 .0 np (1 p) X 0 Standard Deviation P(X) .6 .4 .2 .0 1 2 3 4 5 n = 5 p = 0.5 X 0 4 - 54 n = 5 p = 0.1 1 2 3 4 5 © 1998 Prentice-Hall, Inc. Binomial Probability Distribution Example Experiment: Toss 1 coin 5 times in a row. Note # tails. What’s the probability of 3 tails? 4 - 55 Binomial Probability Distribution Example © 1998 Prentice-Hall, Inc. Experiment: Toss 1 coin 5 times in a row. Note # tails. What’s the probability of 3 tails? n! x n x p( x ) p (1 p ) x !(n x )! 5! 3 5 3 p(3) .5 (1 .5) 3 !(5 3)! 0.3125 4 - 56 © 1998 Prentice-Hall, Inc. 4 - 57 Using the Binomial Probability Table © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Cumulative probabilities: p(x k) given n & p 4 - 58 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Cumulative probabilities: p(x k) given n & p 4 - 59 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Cumulative probabilities: p(x k) given n & p 4 - 60 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Cumulative probabilities: p(x k) given n & p 4 - 61 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Select table for n = 5 4 - 62 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Select row for k = 3 4 - 63 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Select column for p = 0.50 4 - 64 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Cumulative probability: p(x 3) = .812 4 - 65 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 p(x 3) = p(x 3) - p(x 2). Select row for k = 2 4 - 66 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Select column for p = 0.50 4 - 67 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 Cumulative probability: p(x 2) = .500 4 - 68 © 1998 Prentice-Hall, Inc. Using the Binomial Probability Table n=5 p k .01 … 0.50 … .99 0 .951 … .031 … .000 1 .999 … .188 … .000 2 1.000 … .500 … .000 3 1.000 … .812 … .001 4 1.000 … .969 … .049 p(x 3) = p(x 3) - p(x 2) = .812 - .500 = .312 4 - 69 © 1998 Prentice-Hall, Inc. Binomial Distribution Thinking Challenge You’re a telemarketer selling service contracts for Macy’s. You’ve sold 20 in your last 100 calls (p = .20). If you call 12 people tonight, what’s the probability of A. B. C. D. No sales? Exactly 2 sales? At most 2 sales? At least 2 sales? 4 - 70 Alone Group Class © 1998 Prentice-Hall, Inc. Binomial Distribution Solution* Using the Binomial Formula: A. p(0) = .0687 B. p(2) = .2835 C. p(at most 2) = p(0) + p(1) + p(2) = .0687 + .2062 + .2835 = .5584 D. p(at least 2) = p(2) + p(3)...+ p(12) = 1 - [p(0) + p(1)] = 1 - .0687 - .2062 = .7251 4 - 71 © 1998 Prentice-Hall, Inc. Poisson Distribution 4 - 72 © 1998 Prentice-Hall, Inc. Discrete Probability Distribution Models Discrete Probability Distribution Binomial 4 - 73 Poisson Other Poisson Random Variable © 1998 Prentice-Hall, Inc. 1. Number of events that occur in an interval Events per unit Time, length, area, space 2. Examples # Customers arriving in 20 minutes # Strikes per year in the U.S. # Defects per lot (group) of VCR’s 4 - 74 Poisson Process © 1998 Prentice-Hall, Inc. 1. Constant event probability 2. Average of 60/hr is 1/min for 60 1-minute intervals One event per interval 3. Don’t arrive together Independent events Arrival of 1 person does not affect another’s arrival 4 - 75 © 1984-1994 T/Maker Co. © 1998 Prentice-Hall, Inc. Poisson Probability Distribution Function x - p ( x) e x! p(x) = Probability of x given = Expected (mean) number of ‘successes’ e = 2.71828 (base of natural logs) x = Number of ‘successes’ per unit 4 - 76 © 1998 Prentice-Hall, Inc. 4 - 77 Poisson Distribution Characteristics Poisson Distribution Characteristics © 1998 Prentice-Hall, Inc. Mean E(x) N x p( x ) i 1 4 - 78 Poisson Distribution Characteristics © 1998 Prentice-Hall, Inc. Mean E(x) N x p( x ) i 1 Standard Deviation 4 - 79 Poisson Distribution Characteristics © 1998 Prentice-Hall, Inc. Mean E(x) = 0.5 P(X) N x p( x ) .6 .4 .2 .0 X 0 1 2 3 4 5 i 1 = 6 P(X) Standard Deviation .6 .4 .2 .0 X 0 4 - 80 2 4 6 8 10 © 1998 Prentice-Hall, Inc. Poisson Distribution Example Patients arrive at a hospital clinic at a rate of 72 per hour. What is the probability of 4 patients arriving in 3 minutes? 4 - 81 © 1995 Corel Corp. © 1998 Prentice-Hall, Inc. Poisson Distribution Solution 72 per hr. = 1.2 per min. = 3.6 per 3 min. interval 4 - 82 © 1998 Prentice-Hall, Inc. Poisson Distribution Solution 72 per hr. = 1.2 per min. = 3.6 per 3 min. interval p( x ) e x - x! 3.6f e a p(4) 4 4! 0.1912 4 - 83 -3.6 © 1998 Prentice-Hall, Inc. 4 - 84 Using the Poisson Probability Table Using the Poisson Probability Table © 1998 Prentice-Hall, Inc. .02 : 3.4 3.6 3.8 : 0 .980 : .033 .027 .022 : … … : … … … : x 3 4 : : .558 .744 .515 .706 .473 .668 : : … 9 : … … … : : .997 .996 .994 : Cumulative probabilities 4 - 85 Using the Poisson Probability Table © 1998 Prentice-Hall, Inc. .02 : 3.4 3.6 3.8 : 0 .980 : .033 .027 .022 : … … : … … … : x 3 4 : : .558 .744 .515 .706 .473 .668 : : … 9 : … … … : : .997 .996 .994 : Select row with = 3.6 4 - 86 Using the Poisson Probability Table © 1998 Prentice-Hall, Inc. .02 : 3.4 3.6 3.8 : 0 .980 : .033 .027 .022 : … … : … … … : x 3 : : .558 .744 .515 .706 .473 .668 : : p(x 4) = p(x 4) - p(x 3). 4 - 87 4 … 9 : … … … : : .997 .996 .994 : Using the Poisson Probability Table © 1998 Prentice-Hall, Inc. .02 : 3.4 3.6 3.8 : 0 .980 : .033 .027 .022 : … … : … … … : x 3 4 : : .558 .744 .515 .706 .473 .668 : : … 9 : … … … : : .997 .996 .994 : p(x 4) = p(x 4) - p(x 3). Select column x = 4. 4 - 88 Using the Poisson Probability Table © 1998 Prentice-Hall, Inc. .02 : 3.4 3.6 3.8 : 0 .980 : .033 .027 .022 : … … : … … … : x 3 4 : : .558 .744 .515 .706 .473 .668 : : … 9 : … … … : : .997 .996 .994 : p(x 4) = p(x 4) - p(x 3) = .706 - p(x 3) 4 - 89 Using the Poisson Probability Table © 1998 Prentice-Hall, Inc. .02 : 3.4 3.6 3.8 : 0 .980 : .033 .027 .022 : … … : … … … : x 3 Select column x = 3 4 : : .558 .744 .515 .706 .473 .668 : : … 9 : … … … : : .997 .996 .994 : p(x 4) = p(x 4) - p(x 3) = .706 - p(x 3) 4 - 90 Using the Poisson Probability Table © 1998 Prentice-Hall, Inc. .02 : 3.4 3.6 3.8 : 0 .980 : .033 .027 .022 : … … : … … … : x 3 4 : : .558 .744 .515 .706 .473 .668 : : … 9 : … … … : : .997 .996 .994 : p(x 4) = p(x 4) - p(x 3) = .706 - .515 = .191 4 - 91 Thinking Challenge © 1998 Prentice-Hall, Inc. You work in Quality Assurance for an investment firm. A clerk enters 75 words per minute with 6 errors per hour. What is the probability of 0 errors in a 255-word bond transaction? © 1984-1994 T/Maker Co. 4 - 92 Alone Group Class © 1998 Prentice-Hall, Inc. Poisson Distribution Solution: Finding * 75 words/min = (75 words/min)(60 min/hr) = 4500 words/hr 6 errors/hr = 6 errors/4500 words = .00133 errors/word In a 255-word transaction (interval): = (.00133 errors/word )(255 words) = .34 errors/255-word transaction 4 - 93 © 1998 Prentice-Hall, Inc. Poisson Distribution Solution: Finding p(0)* e x p (x) - x! .34f e a p (0 ) 0 -.34 0! = .7118 4 - 94 Conclusion © 1998 Prentice-Hall, Inc. 1. Defined random variable 2. Computed the expected value & variance of discrete random variables 3. Described the binomial & Poisson probability distributions 4. Calculated probabilities for binomial & Poisson random variables 4 - 95 This Class... © 1998 Prentice-Hall, Inc. Please take a moment to answer the following questions in writing: 1. What was the most important thing you learned in class today? 2. What do you still have questions about? 3. How can today’s class be improved? 4 - 96 End of Chapter Any blank slides that follow are blank intentionally.