Download Sampling- part 4

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Introduction to Biostatistics (PUBHLTH 540)
Multiple Random
Variables
1
Multiple Random Variables
 Linear
Combinations of Random
Variables
– Expected Value
– Variance
 Stochastic
Models
 Covariance of two Random
Variables
 Independence
 Correlation
2
An Example




Choose a Simple Random Sample with Replacement of size n=2 from
a Population of N=3
Observe:
– 1 Response (i.e. Age) on each Subject in the Sample
Question:
– What is the average age of subjects in the population?
Use the sample mean to estimate the Population Average Age
Introducing….
Daisy
Lily
SPH&HS, UMASS Amherst
Rose
3
Population
SPH&HS, UMASS Amherst
4
Population of N=3
ID
(s)
1
2
3
Note:
Population mean
Variance.
Subject
Daisy
Lily
Rose
Response
(Age)
25
32
33
  
N
1
38
2
2
    xi      12.67
N i 1
3
5
Pick SRS with Replacement of n=2
ID (s) Subject
Response
1
Daisy
25
2
3
Lily
Rose
32
33
i=1,…,n=2
Y1
a random variable representing the 1st
selection
Y2
a random variable representing the
2nd selection
6
Use as an Estimator: Sample Mean
1 n
Y   Yi
n i 1
1
1
1
 Y1  Y2  ...  Yn
n
n
n
A Linear Estimator- a sum of random variables
When n=2,
1
1
Y  Y1  Y2
2
2
 1 1   Y1 

Y 
 2 2  2 
 cY
1  1
c  
2  1
1
c  1 1
2
 Y1 
Y 
 Y2 
7
Linear Combination of Random Variables
Example: Sample Mean
1 n
Y   Yi
n i 1
1
1
1
 Y1  Y2  ...  Yn
n
n
n
 Y1 
Y 
1
2

 1 1
1
 
n
 
 Yn 
 cY
1
c  1n
n
Y  Y1 Y2
Yn 
8
Models for Response
ys     s
Non-Stochastic model (Deterministic)
Yi    Ei
Stochastic model
ID (s) Subject
Response
ys     s

s
Daisy
y1  25
30
5
2
Lily
3 (=N) Rose
y2  32
30
30
2
3
1
y3  33
9
Finite Population
Yi    Ei


Pick a SRS with
replacement of
size n=2

Stochastic model
i 1
i2
Y2    E2
Y1    E1
SPH&HS, UMASS Amherst
10
Finite Population
Yi    Ei


with
replacement

Stochastic model
i 1
i2
Y2    E2
Yy11    E11
SPH&HS, UMASS Amherst
11
Finite Population
Yi    Ei


with
replacement

Stochastic model
i 1
i2
Yy22    E22
y1    1
SPH&HS, UMASS Amherst
12
Sampling- n=2


with
replacement

Stochastic model
i 1
Y1    E1
i2
Y2    E2
Random Variables
Linear Combination of
Random Variables
SPH&HS, UMASS Amherst
1 n
Y   Yi
n i 1
 cY
13
Sampling- n=2

i 1

with
replacement

i2
Y2  y2
Y1  y1
Realized Values
y1    1
SPH&HS, UMASS Amherst
y2     2
14
Other Possible Samples

i 1

with
replacement

i2
y2     2
y1    1
SPH&HS, UMASS Amherst
15
Other Possible Samples

i 1

with
replacement

i2
y2     2
y1    1
SPH&HS, UMASS Amherst
16
All Possible Samples
Y1  y1 Y2  y2
Sample (t)
Probability
1
1/9
25
25
2
1/9
25
32
3
1/9
25
33
4
1/9
32
25
5
1/9
32
32
6
1/9
32
33
7
1/9
33
25
8
1/9
33
32
17
Expected Values
P Y1  y1  y1
P Y2  y2  y2
25
2.78
2.78
25
32
2.78
3.56
1/9
25
33
2.78
3.67
4
1/9
32
25
3.56
2.78
5
1/9
32
32
3.56
3.56
6
1/9
32
33
3.56
3.67
7
1/9
33
25
3.67
2.78
8
1/9
33
32
3.67
3.56
9
1/9
33
33
3.67
3.67
Y1  y1 Y2  y2
Sample
(t)
Probability
1
1/9
25
2
1/9
3
E Y1   30
E Y2   30
T
E Yi    P Yi  yi  yi
t 1
18
var Y1 
Y1  y1 yi  
 yi   
Sample
(t)
Probability
1
1/9
25
-5
25
2
1/9
25
-5
25
3
1/9
25
-5
25
4
1/9
32
2
4
5
1/9
32
2
4
6
1/9
32
2
4
7
1/9
33
3
9
8
1/9
33
3
9
9
1/9
33
3
9
0.00
12.67
T
2
var Yi    P Yi  yi  yi   
t 1
2
19
var Y2 
Y2  y2 yi  
 yi   
Sample
(t)
Probability
1
1/9
25
-5
25
2
1/9
32
2
4
3
1/9
33
3
9
4
1/9
25
-5
25
5
1/9
32
2
4
6
1/9
33
3
9
7
1/9
25
-5
25
8
1/9
32
2
4
9
1/9
33
3
9
0.00
12.67
T
2
var Yi    P Yi  yi  yi   
t 1
2
20
Covariance of Two Random Variables
T
cov Y , Z    P Y  y; Z  z   y  E Y    z  E  Z  
t 1
T
cov Y1 , Y2    P Y1  y1;Y2  y2   y1  E Y1   y2  E Y2 
t 1
21
T
cov Y1 , Y2    P Y1  y1;Y2  y2   y1  E Y1   y2  E Y2 
t 1
 y1    y2   
y1  
y2  
25
-5
-5
25
25
32
-5
2
-10
1/9
25
33
-5
3
-15
4
1/9
32
25
2
-5
-10
5
1/9
32
32
2
2
4
6
1/9
32
33
2
3
6
7
1/9
33
25
3
-5
-15
8
1/9
33
32
3
2
6
9
1/9
33
33
3
3
9
Sample
(t)
Probability
1
1/9
25
2
1/9
3
Y1  y1 Y2  y2
cov Y1 , Y2   0
Based on simple random sampling with replacement
22
Variance Matrix
cov Y1 , Y2  
 Y1   var Y1 
var    

var Y2  
 Y2   cov Y1 , Y2 

When n=2, and SRS with replacement:
 Y1    2 0 
var    
2
1 0
 Y2   0  
I2  

0
1


0
2 1
 

Identity Matrix
0
1


23
Variance Matrix for n Random
Variables
cov Y1 , Y2 
 Y1   var Y1 
 Y   cov Y , Y
 1 2  var Y2 
2


var

  
  
 Yn   cov Y1 , Yn  cov Y2 , Yn 
cov Y1 , Yn  

cov Y2 , Yn  


var Yn  
24
Covariance of Random Variables When SRS
without Replacment (n=2)
T
cov Y1 , Y2    P Y1  y1;Y2  y2   y1  E Y1   y2  E Y2 
t 1
 y1    y2   
y1  
y2  
32
-5
2
-10
25
33
-5
3
-15
1/6
32
25
2
-5
-10
4
1/6
32
33
2
3
6
5
1/6
33
25
3
-5
-15
6
1/6
33
32
3
2
6
Y1  y1 Y2  y2
Sample
(t)
Probability
1
1/6
25
2
1/6
3
cov Y1 , Y2   6.33
25
Covariance of two random variables when
sampling without replacement
cov Yi , Y j   

 1
 Y1 

Y 
 1
var  2    2  N  1
 

 

 Yn 
 1

 N 1
2
N 1
1
N 1
1
1
N 1
1 
N 1 

1 
N 1 



1 

26
Estimating the Covariance
Estimate the variance:
 assuming srs
N
1
2
2
    ys   
N s 1
n
2
1
2
S 
Yi  Y 


n  1 i 1
Estimate the
covariance:
 assuming srs
1 N
 xy    ys   y   xs   x 
N s 1
1 n
ˆ xy 
Yi  Y  X i  X 


n  1 i 1
27
Independence

Two random variables, Y and Z are
independent if
P(Y=y|Z=z)=P(Y=y)
P(Y=y|Z=z) means the probability that Y
has a value of y, given Z has a value of z
(see Text, sections 6.1 and 6.2)
28
Example: SRS with rep n=2
Are Y1 and Y2 independent?
Does
P Y2  y2 | Y1  y1   P Y2  y2  ?
ID (s) Subject
Response
1
Daisy
25
2
3
Lily
Rose
32
33
29
Sampling n=2 (with rep)
Are Y1 and Y2 independent?



Y1    E1
i 1
y1    1
P Y1  y1   1/ 3
P Y1  y1   1/ 3
P Y1  y1   1/ 3



Y2    E2
i2
P Y2  y2 | Y1  y1   1/
? 3
Yes
SPH&HS, UMASS Amherst
P Y2  y2   1/ 3
P Y2  y2   1/ 3
P Y2  y2   1/ 3
30
Sampling n=2 (with rep)
Are Y1 and Y2 independent?



Y1    E1
i 1
y1    1
P Y1  y1   1/ 3
P Y1  y1   1/ 3
P Y1  y1   1/ 3



Y2    E2
i2
P Y2  y2 | Y1  y1   1/
? 3
Yes
SPH&HS, UMASS Amherst
P Y2  y2   1/ 3
P Y2  y2   1/ 3
P Y2  y2   1/ 3
31
Sampling n=2 (with rep)
Are Y1 and Y2 independent?



Y1    E1
i 1
y1    1
P Y1  y1   1/ 3
P Y1  y1   1/ 3
P Y1  y1   1/ 3



Y2    E2
i2
P Y2  y2 | Y1  y1   1/
? 3
Yes
SPH&HS, UMASS Amherst
P Y2  y2   1/ 3
P Y2  y2   1/ 3
P Y2  y2   1/ 3
32
Example: SRS without rep n=2
Are Y1 and Y2 independent?
Does
P Y2  y2 | Y1  y1   P Y2  y2  ?
ID (s) Subject
Response
1
Daisy
25
2
3
Lily
Rose
32
33
33
Sampling n=2 (without replacement)
Are Y1 and Y2 independent?



Y1    E1
i 1
y1    1
P Y1  y1   1/ 3
P Y1  y1   1/ 3
P Y1  y1   1/ 3



Y2    E2
i2
P Y22  y22 | Y1  y1   0?
No
SPH&HS, UMASS Amherst
P Y2  y2   1/ 3
P Y2  y2   1/ 3
P Y2  y2   1/ 3
34
Sampling n=2 (without replacement)
Are Y1 and Y2 independent?



Y1    E1
i 1
y1    1
P Y1  y1   1/ 3
P Y1  y1   1/ 3
P Y1  y1   1/ 3



Y2    E2
i2
P Y22  y22 | Y11  y11   1/
? 2
No
SPH&HS, UMASS Amherst
P Y2  y2   1/ 3
P Y2  y2   1/ 3
P Y2  y2   1/ 3
35
Sampling n=2 (without replacement)
Are Y1 and Y2 independent?



Y1    E1
i 1
y1    1
P Y1  y1   1/ 3
P Y1  y1   1/ 3
P Y1  y1   1/ 3



Y2    E2
i2
P Y22  y22 | Y11  y11   1/
? 2
No
SPH&HS, UMASS Amherst
P Y2  y2   1/ 3
P Y2  y2   1/ 3
P Y2  y2   1/ 3
36
Relationship between
Independence and Covariance
If two random variables are independent,
then their covariance is 0.
 If the covariance of two random variables
is zero, the two may (or may not) be
independent

37
Expected Value of a Linear Combination of
Random Variables

.
Write linear combinations using vector notation
1 n
Y   Yi
n i 1
1
 1 1
n
 cY
Random variables
Constants
 Y1 
Y 
1  2 
 
 
 Yn 
1
c  1n
n
Y  Y1 Y2
Yn 
38
Example: SRS of size n:
E Y   E  cY 
 cE  Y 
where
E  Y    E Y1  E Y2 
E Yn  
E Y   E  cY 
1
 1 1
n
1
 1 1
n
 E Y1  


E
Y


1 
1 




 E Yn  


1    
 
 

39
Example 2: Suppose two independent SRS w/o
replacement are selected from populations of boy and girl
babies, and the weight recorded. Let us represent the boy
weight by Y and the girl weight by X. Suppose sample
results are given as follows:
Sample
Mean
Variance
Boys
n=25
Girls
n=40
Y
X
 y2

2
x
An estimate is wanted of the average
birth weight in Europe, where for
every 1000 births, 485 are girls,
while 515 are boys.
Write a linear combination that can
be used to construct an estimator.
Z  0.485 X  0.515Y
X
  0.485 0.515   
Y 
40
Variance of a Linear Combination of Random
Variables
var  cY   c var  Y  c
Example: Sample
mean, n=2 srs with
replacement
1
c  12
2
Constants
Y  Y1 Y2 
Random variables
  Y1   1 1
1
var  cY   1 1  var     
2
  Y2   2 1
  2 0  1
1
 1 1 
2  
4
 0   1
41
Matrix Multiplication
 c1
Hence
 a b
c2  
  c1a  c2 d

d e
c1b  c2e 
  2 0   1
1
var  cY   1 1 
2  
4
 0    1
1 2
2 1
     
4
1
1
  2 2 
4

2
2
42
Practice: Variance of a Linear Combination of
Random Variables
Example: Sample mean,
n=2 srs withOUT
replacement
from a population of N
1
c  12
2
Constants
Y  Y1 Y2 
Random variables
1 

1


 Y1 
N 1 
2
var     


 Y2 
  1
1 

2
 N 1

var  cY  
1 1 
1 
N  1  1
 
1
1
4
 
1   
 N 1

2 
1
1  1

1

1



4  N 1
N  1  1
1
1 

 1 

 N 1  2

2
43
Correlation (see 17.1, 17.2 in text)

The correlation between two random
variables is defined as


cov  X , Y 
var  X  var Y 
Based on a simple random sample, we
estimate the correlation by
r
ˆ xy
S x2 S y2
1 n
ˆ xy 
X i  X Yi  Y 


n  1 i 1
n
n
2
2
1
1
2
2
Sx 
Xi  X  Sy 
Yi  Y 




n  1 i 1
n  1 i 1
44
Related documents