Download The Cell

Document related concepts
no text concepts found
Transcript
Chapter 7
A Tour of the Cell
PowerPoint Lectures for
Biology, Seventh Edition
Neil Campbell and Jane Reece
Lectures by Chris Romero
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Overview: The Importance of Cells
• All organisms are made of cells
• The cell is the simplest collection of matter
that can live
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Cell structure is correlated to cellular function
Figure 6.1
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
10 µm
• Concept 6.1: To study cells, biologists use
microscopes and the tools of biochemistry
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Microscopy
• Scientists use microscopes to visualize cells
too small to see with the naked eye
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Light microscopes (LMs)
– Pass visible light through a specimen
– Magnify cellular structures with lenses
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Unaided eye
• Different types of microscopes
– Can be used to visualize different sized
cellular structures
10 m
0.1 m
Human height
Length of some
nerve and
muscle cells
Chicken egg
1 cm
Light microscope
1m
10 µ m
1µm
100 nm
Most plant
and Animal
cells
Nucleus
Most bacteria
Mitochondrion
Smallest bacteria
Viruses
10 nm
Ribosomes
Proteins
1 nm
Lipids
Small molecules
Figure 6.2
0.1 nm
Atoms
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Electron microscope
100 µm
Electron microscope
Frog egg
1 mm
Measurements
1 centimeter (cm) = 102 meter (m) = 0.4 inch
1 millimeter (mm) = 10–3 m
1 micrometer (µm) = 10–3 mm = 10–6 m
1 nanometer (nm) = 10–3 mm = 10–9 m
– Use different methods for enhancing
visualization of cellular structures
TECHNIQUE
RESULT
(a) Brightfield (unstained specimen).
Passes light directly through specimen.
Unless cell is naturally pigmented or
artificially stained, image has little
contrast. [Parts (a)–(d) show a
human cheek epithelial cell.]
50 µm
(b) Brightfield (stained specimen).
Staining with various dyes enhances
contrast, but most staining procedures
require that cells be fixed (preserved).
(c) Phase-contrast. Enhances contrast
in unstained cells by amplifying
variations in density within specimen;
especially useful for examining living,
unpigmented cells.
Figure 6.3
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
(d) Differential-interference-contrast (Nomarski).
Like phase-contrast microscopy, it uses optical
modifications to exaggerate differences in
density, making the image appear almost 3D.
(e) Fluorescence. Shows the locations of specific
molecules in the cell by tagging the molecules
with fluorescent dyes or antibodies. These
fluorescent substances absorb ultraviolet
radiation and emit visible light, as shown
here in a cell from an artery.
50 µm
(f) Confocal. Uses lasers and special optics for
“optical sectioning” of fluorescently-stained
specimens. Only a single plane of focus is
illuminated; out-of-focus fluorescence above
and below the plane is subtracted by a computer.
A sharp image results, as seen in stained nervous
tissue (top), where nerve cells are green, support
cells are red, and regions of overlap are yellow. A
standard fluorescence micrograph (bottom) of this
relatively thick tissue is blurry.
50 µm
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Concept 6.2: Eukaryotic cells have internal
membranes that compartmentalize their functions
• Two types of cells make up every organism
– Prokaryotic
– Eukaryotic
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Comparing Prokaryotic and Eukaryotic Cells
• All cells have several basic features in common
– They are bounded by a plasma membrane
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
– They contain a semifluid substance called the
cytosol
– They contain chromosomes
– They all have ribosomes
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Prokaryotic cells
– Do not contain a nucleus
– Have their DNA located in a region called
the nucleoid
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Pili: attachment structures on
the surface of some prokaryotes
Nucleoid: region where the
cell’s DNA is located (not
enclosed by a membrane)
Ribosomes: organelles that
synthesize proteins
Bacterial
chromosome
(a) A typical
rod-shaped bacterium
Plasma membrane: membrane
enclosing the cytoplasm
Cell wall: rigid structure outside
the plasma membrane
Capsule: jelly-like outer coating
of many prokaryotes
0.5 µm
Flagella: locomotion
organelles of
some bacteria
Figure 6.6 A, B
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
(b) A thin section through the
bacterium Bacillus coagulans
(TEM)
• Eukaryotic cells
– Contain a true nucleus, bounded by a
membranous nuclear envelope
– Are generally quite a bit bigger than
prokaryotic cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The logistics of carrying out cellular metabolism
sets limits on the size of cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• A smaller cell
– Has a higher surface to volume ratio, which
facilitates the exchange of materials into and
out of the cell
Surface area increases while
total volume remains constant
5
1
1
Total surface area
(height  width 
number of sides 
number of boxes)
6
150
750
Total volume
(height  width  length
 number of boxes)
1
125
125
Surface-to-volume
ratio
(surface area  volume)
6
12
6
Figure 6.7
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The plasma membrane
– Functions as a selective barrier
– Allows sufficient passage of nutrients
and waste
Outside of cell
Carbohydrate side chain
Hydrophilic
region
Inside of cell
0.1 µm
Hydrophobic
region
Figure 6.8 A, B
(a) TEM of a plasma
membrane. The
plasma membrane,
here in a red blood
cell, appears as a
pair of dark bands
separated by a
light band.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Hydrophilic
region
Phospholipid
Proteins
(b) Structure of the plasma membrane
A Panoramic View of the Eukaryotic Cell
• Eukaryotic cells
– Have extensive and elaborately arranged
internal membranes, which form organelles
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Plant and animal cells
– Have most of the same organelles
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• A animal cell
ENDOPLASMIC RETICULUM (ER)
Rough ER
Smooth ER
Nuclear envelope
Nucleolus
NUCLEUS
Chromatin
Flagelium
Plasma membrane
Centrosome
CYTOSKELETON
Microfilaments
Intermediate filaments
Ribosomes
Microtubules
Microvilli
Golgi apparatus
Peroxisome
Figure 6.9
Mitochondrion
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Lysosome
In animal cells but not plant cells:
Lysosomes
Centrioles
Flagella (in some plant sperm)
• A plant cell
Nuclear envelope
Nucleolus
Chromatin
NUCLEUS
Centrosome
Rough
endoplasmic
reticulum Smooth
endoplasmic
reticulum
Ribosomes (small brwon dots)
Central vacuole
Tonoplast
Golgi apparatus
Microfilaments
Intermediate
filaments
CYTOSKELETON
Microtubules
Mitochondrion
Peroxisome
Plasma membrane
Chloroplast
Cell wall
Plasmodesmata
Wall of adjacent cell
Figure 6.9
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
In plant cells but not animal cells:
Chloroplasts
Central vacuole and tonoplast
Cell wall
Plasmodesmata
Concept 6.3: The eukaryotic cell’s genetic
instructions are housed in the nucleus and
carried out by the ribosomes
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Nucleus: Genetic Library of the Cell
• The nucleus
– Contains most of the genes in the
eukaryotic cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The nuclear envelope
– Encloses the nucleus, separating its contents
from the cytoplasm
Nucleus
1 µm
Nucleolus
Chromatin
Nucleus
Nuclear envelope:
Inner membrane
Outer membrane
Nuclear pore
Pore
complex
Rough ER
Surface of nuclear
envelope.
1 µm
Ribosome
0.25 µm
Close-up of
nuclear
envelope
Figure 6.10
Pore complexes (TEM).
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Nuclear lamina (TEM).
Ribosomes: Protein Factories in the Cell
• Ribosomes
– Are particles made of ribosomal RNA
and protein
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
– Carry out protein synthesis
Ribosomes
ER
Cytosol
Endoplasmic reticulum (ER)
Free ribosomes
Bound ribosomes
Large
subunit
0.5 µm
TEM showing ER and ribosomes
Figure 6.11
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Small
subunit
Diagram of a ribosome
Concept 6.4: The endomembrane system
regulates protein traffic and performs metabolic
functions in the cell
• The endomembrane system
– Includes many different structures
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Endoplasmic Reticulum: Biosynthetic Factory
• The endoplasmic reticulum (ER)
– Accounts for more than half the total
membrane in many eukaryotic cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The ER membrane
– Is continuous with the nuclear envelope
Smooth ER
Rough ER
Nuclear
envelope
ER lumen
Cisternae
Ribosomes
Transitional ER
Transport vesicle
Smooth ER
Rough ER 200 µm
Figure 6.12
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• There are two distinct regions of ER
– Smooth ER, which lacks ribosomes
– Rough ER, which contains ribosomes
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Functions of Smooth ER
• The smooth ER
– Synthesizes lipids
– Metabolizes carbohydrates
– Stores calcium
– Detoxifies poison
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Functions of Rough ER
• The rough ER
– Has bound ribosomes
– Produces proteins and membranes, which are
distributed by transport vesicles
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Golgi Apparatus: Shipping and
Receiving Center
• The Golgi apparatus
– Receives many of the transport vesicles
produced in the rough ER
– Consists of flattened membranous sacs called
cisternae
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Functions of the Golgi apparatus include
– Modification of the products of the rough ER
– Manufacture of certain macromolecules
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Functions of the Golgi apparatus
Golgi
apparatus
cis face
(“receiving” side of
Golgi apparatus)
1 Vesicles move
2 Vesicles coalesce to
6 Vesicles also
form new cis Golgi cisternae
from ER to Golgi
transport certain
Cisternae
proteins back to ER
3 Cisternal
maturation:
Golgi cisternae
move in a cisto-trans
direction
Figure 6.13
5 Vesicles transport specific
proteins backward to newer
Golgi cisternae
4 Vesicles form and
leave Golgi, carrying
specific proteins to
other locations or to
the plasma membrane for secretion
trans face
(“shipping” side of
Golgi apparatus)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
0.1 0 µm
TEM of Golgi apparatus
Lysosomes: Digestive Compartments
• A lysosome
– Is a membranous sac of hydrolytic enzymes
– Can digest all kinds of macromolecules
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Lysosomes carry out intracellular digestion by
– Phagocytosis
Nucleus
1 µm
Lysosome
Lysosome contains
active hydrolytic
enzymes
Food vacuole
fuses with
lysosome
Hydrolytic
enzymes digest
food particles
Digestive
enzymes
Lysosome
Plasma membrane
Digestion
Food vacuole
Figure 6.14 A
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
(a) Phagocytosis: lysosome digesting food
• Autophagy
Lysosome containing
two damaged organelles
1µm
Mitochondrion
fragment
Peroxisome
fragment
Lysosome fuses with
vesicle containing
damaged organelle
Hydrolytic enzymes
digest organelle
components
Lysosome
Vesicle containing
damaged mitochondrion
Figure 6.14 B
Digestion
(b) Autophagy: lysosome breaking down damaged organelle
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Vacuoles: Diverse Maintenance Compartments
• A plant or fungal cell
– May have one or several vacuoles
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Food vacuoles
– Are formed by phagocytosis
• Contractile vacuoles
– Pump excess water out of protist cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Central vacuoles
– Are found in plant cells
– Hold reserves of important organic
compounds and water
Central vacuole
Cytosol
Tonoplast
Nucleus
Central
vacuole
Cell wall
Chloroplast
Figure 6.15
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
5 µm
The Endomembrane System: A Review
• The endomembrane system
– Is a complex and dynamic player in the cell’s
compartmental organization
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Relationships among organelles of the
endomembrane system
1 Nuclear envelope is
connected to rough ER,
which is also continuous
with smooth ER
Nucleus
Rough ER
2
Membranes and proteins
produced by the ER flow in
the form of transport vesicles
to the Golgi
Smooth ER
cis Golgi
Nuclear envelop
3
Golgi pinches off transport
Vesicles and other vesicles
that give rise to lysosomes and
Vacuoles
Plasma
membrane
trans Golgi
4
Lysosome available
for fusion with another
vesicle for digestion
Figure 6.16
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
5 Transport vesicle carries 6
proteins to plasma
membrane for secretion
Plasma membrane expands
by fusion of vesicles; proteins
are secreted from cell
• Concept 6.5: Mitochondria and chloroplasts
change energy from one form to another
• Mitochondria
– Are the sites of cellular respiration
• Chloroplasts
– Found only in plants, are the sites of
photosynthesis
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Mitochondria: Chemical Energy Conversion
• Mitochondria
– Are found in nearly all eukaryotic cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Mitochondria are enclosed by two membranes
– A smooth outer membrane
– An inner membrane folded into cristae
Mitochondrion
Intermembrane space
Outer
membrane
Free
ribosomes
in the
mitochondrial
matrix
Inner
membrane
Cristae
Matrix
Figure 6.17
Mitochondrial
DNA
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
100 µm
Chloroplasts: Capture of Light Energy
• The chloroplast
– Is a specialized member of a family of closely
related plant organelles called plastids
– Contains chlorophyll
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Chloroplasts
– Are found in leaves and other green organs of
plants and in algae
Chloroplast
Ribosomes
Stroma
Chloroplast
DNA
Inner and outer
membranes
Granum
1 µm
Figure 6.18
Thylakoid
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Chloroplast structure includes
– Thylakoids, membranous sacs
– Stroma, the internal fluid
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Peroxisomes: Oxidation
• Peroxisomes
– Produce hydrogen peroxide and convert it to
water
Chloroplast
Peroxisome
Mitochondrion
Figure 6.19
1 µm
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Concept 6.6: The cytoskeleton is a network of
fibers that organizes structures and activities in
the cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The cytoskeleton
– Is a network of fibers extending throughout the
cytoplasm
Microtubule
Figure 6.20
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
0.25 µm
Microfilaments
Roles of the Cytoskeleton: Support, Motility, and Regulation
• The cytoskeleton
– Gives mechanical support to the cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
– Is involved in cell motility, which utilizes motor
proteins
ATP
Vesicle
Receptor for
motor protein
Motor protein
Microtubule
(ATP powered)
of cytoskeleton
(a) Motor proteins that attach to receptors on organelles can “walk”
the organelles along microtubules or, in some cases, microfilaments.
Vesicles
Microtubule
0.25 µm
Figure 6.21 A, B
(b) Vesicles containing neurotransmitters migrate to the tips of nerve cell
axons via the mechanism in (a). In this SEM of a squid giant axon, two
vesicles can be seen moving along a microtubule. (A separate part of the
experiment provided the evidence that they were in fact moving.)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Components of the Cytoskeleton
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• There are three main types of fibers that make
up the cytoskeleton
Table 6.1
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Microtubules
• Microtubules
– Shape the cell
– Guide movement of organelles
– Help separate the chromosome copies in
dividing cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Microfilaments (Actin Filaments)
• Microfilaments
– Are built from molecules of the protein actin
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Microfilaments that function in cellular motility
– Contain the protein myosin in addition to actin
Muscle cell
Actin filament
Myosin filament
Myosin arm
Figure 6.27 A
(a) Myosin motors in muscle cell contraction.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Intermediate Filaments
• Intermediate filaments
– Support cell shape
– Fix organelles in place
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Concept 6.7: Extracellular components and
connections between cells help coordinate
cellular activities
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Cell Walls of Plants
• The cell wall
– Is an extracellular structure of plant cells that
distinguishes them from animal cells
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Plant cell walls
– Are made of cellulose fibers embedded in
other polysaccharides and protein
– May have multiple layers
Central
vacuole
of cell
Plasma
membrane
Secondary
cell wall
Primary
cell wall
Central
vacuole
of cell
Middle
lamella
1 µm
Central vacuole
Cytosol
Plasma membrane
Plant cell walls
Figure 6.28
Plasmodesmata
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Extracellular Matrix (ECM) of Animal Cells
• Animal cells
– Lack cell walls
– Are covered by an elaborate matrix, the ECM
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The ECM
– Is made up of glycoproteins and other
macromolecules
EXTRACELLULAR FLUID
Collagen
A proteoglycan
complex
Polysaccharide
molecule
Carbohydrates
Core
protein
Fibronectin
Plasma
membrane
Integrin
Integrins
Microfilaments
Figure 6.29
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
CYTOPLASM
Proteoglycan
molecule
• Functions of the ECM include
– Support
– Adhesion
– Movement
– Regulation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Cell: A Living Unit Greater Than the Sum of Its Parts
5 µm
• Cells rely on the integration of structures and
organelles in order to function
Figure 6.32
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Related documents