Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Fig. 12-11-4 Cell wall Origin of replication E. coli cell Two copies of origin Origin Plasma membrane Bacterial chromosome Origin Fig. 12-2 100 µm (a) Reproduction 20 µm 200 µm (b) Growth and development (c) Tissue renewal Fig. 12-5 G1 S (DNA synthesis) G2 Fig. 12-4 0.5 µm Chromosomes Chromosome arm DNA molecules Chromosome duplication (including DNA synthesis) Centromere Sister chromatids Separation of sister chromatids Centromere Sister chromatids Fig. 12-6 G2 of Interphase Centrosomes Chromatin (with centriole (duplicated) pairs) Prophase Early mitotic Aster Centromere spindle Nucleolus Nuclear Plasma envelope membrane Chromosome, consisting of two sister chromatids Metaphase Prometaphase Fragments Nonkinetochore of nuclear microtubules envelope Kinetochore Kinetochore microtubule Anaphase Cleavage furrow Metaphase plate Spindle Centrosome at one spindle pole Telophase and Cytokinesis Daughter chromosomes Nuclear envelope forming Nucleolus forming Fig. 12-6a G2 of Interphase Prophase Prometaphase Fig. 12-6b G2 of Interphase Chromatin Centrosomes (with centriole (duplicated) pairs) Prophase Early mitotic Aster spindle Nucleolus Nuclear Plasma envelope membrane Prometaphase Centromere Chromosome, consisting of two sister chromatids Fragments of nuclear envelope Kinetochore Nonkinetochore microtubules Kinetochore microtubule Fig. 12-6c Metaphase Anaphase Telophase and Cytokinesis Fig. 12-6d Metaphase Anaphase Metaphase plate Spindle Centrosome at one spindle pole Telophase and Cytokinesis Cleavage furrow Daughter chromosomes Nuclear envelope forming Nucleolus forming Fig. 12-7 Aster Centrosome Sister chromatids Microtubules Chromosomes Metaphase plate Kinetochores Centrosome 1 µm Overlapping nonkinetochore microtubules Kinetochore microtubules 0.5 µm Fig. 12-6d Metaphase Anaphase Metaphase plate Spindle Centrosome at one spindle pole Telophase and Cytokinesis Cleavage furrow Daughter chromosomes Nuclear envelope forming Nucleolus forming Fig. 12-9 100 µm Cleavage furrow Contractile ring of microfilaments Vesicles forming cell plate Wall of parent cell Cell plate 1 µm New cell wall Daughter cells (a) Cleavage of an animal cell (SEM) Daughter cells (b) Cell plate formation in a plant cell (TEM) Fig. 12-9a 100 µm Cleavage furrow Contractile ring of microfilaments Daughter cells (a) Cleavage of an animal cell (SEM) Fig. 12-9b Vesicles forming cell plate Wall of parent cell Cell plate 1 µm New cell wall Daughter cells (b) Cell plate formation in a plant cell (TEM) Fig. 12-10 Nucleus Nucleolus 1 Prophase Chromatin condensing Chromosomes 2 Prometaphase 3 Metaphase Cell plate 4 Anaphase 5 Telophase 10 µm Fig. 12-14 G1 checkpoint Control system G1 M G2 M checkpoint G2 checkpoint S Fig. 12-15 G0 G1 checkpoint G1 (a) Cell receives a go-ahead signal G1 (b) Cell does not receive a go-ahead signal Fig. 12-17 M S G1 G2 M G1 S G2 M G1 MPF activity Cyclin concentration Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle Degraded cyclin G2 checkpoint Cyclin is degraded MPF Cdk Cyclin (b) Molecular mechanisms that help regulate the cell cycle Cyclin accumulation Cdk Fig. 12-19 Anchorage dependence Density-dependent inhibition Density-dependent inhibition 25 µm 25 µm (a) Normal mammalian cells (b) Cancer cells Fig. 12-20 Lymph vessel Tumor Blood vessel Cancer cell Metastatic tumor Glandular tissue 1 A tumor grows from a single cancer cell. 2 Cancer cells invade neighboring tissue. 3 Cancer cells spread to other parts of the body. 4 Cancer cells may survive and establish a new tumor in another part of the body.