Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures : Quantum Mechanics Symmetries Symmetries Central to our description of the fundamental forces : Relativity - translations and Lorentz transformations Lie symmetries - SU (3) SU (2) U (1) Copernican principle : “Your system of co-ordinates and units is nothing special” Physics independent of system choice Fundamental principles of particle physics Quantum Mechanics + Relativity } Quantum Field theory Relativistic quantum field theory Fundamental division of physicist’s world : speed slow A c large fast Classical Newton Classical relativity (QM amplitude e t i o n S i( ) small Classical Quantum mechanics Quantum Field theory (S ) c ) Quantum Mechanics : Quantization of dynamical system of particles Quantum Field Theory : Application of QM to dynamical system of fields Why fields? No right to assume that any relativistic process can be explained by single particle since E=mc2 allows pair creation (Relativistic) QM has physical problems. For example it violates causality U (t ) x | e i ( p Amplitude for free propagation from x0 to x 1 2 3 / 2 m )t | x0 d 3 p x | e i ( p 3 i ( p d p e m 2 it Relativistic case : 2 2 / 2 m )t 2 / 2 m )t | p p | x0 eip ( x x0 ) 3/ 2 eim ( x x0 ) U(t) e 2 / 2t -m x 2 t 2 ... nonzero for all x, t ... nonzero for all x, t Relativistic QM - The Klein Gordon equation (1926) (x) Scalar particle (field) (J=0) : E p m 2 2 2 Energy eigenvalues 2 t 2 2 m2 E (p2 m2 )1/ 2 ??? 1927 Dirac tried to eliminate negative solutions by writing a relativistic equation linear in E (a theory of fermions) 1934 Pauli and Weisskopf revived KG equation with E<0 solutions as E>0 solutions for particles of opposite charge (antiparticles). Unlike Dirac’s hole theory this interpretation is applicable to bosons (integer spin) as well as to fermions (half integer spin). As we shall see the antiparticle states make the field theory causal Special relativity a (ct , x, y, z ) Space time point Space-time vector not invariant under translations (a a) a a (ct , x, y, z ) Invariant under translations …but not invariant under rotations or boosts Einstein postulate : the real invariant distance is a 0 2 a 1 2 a 2 2 a 3 2 3 , 0 g a a a a a 2 g diag (1, 1, 1, 1) Physics invariant under all transformations that leave all such distances invariant : Translations and Lorentz transformations Lorentz transformations : 3 x x x x 0 g x x g x x g g (Summation assumed) Solutions : 0 1 0 cos 0 0 0 sin 3 rotations R 3 boosts B cosh sinh 0 0 0 0 0 sin 1 0 0 cos Space reflection – parity P 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 sinh cosh 0 0 0 0 1 0 0 0 0 1 Time reflection, time reversal T 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 The Lorentz transformations form a group, G ( g1 g2 G if g1 , g 2 G) Rotations R( ) e iJ . / [ Ji , J j ] i ijk J z i ( x y y x ).. , (c. f . J r p) 3 k 1 Angular momentum operator ijk Jk totally antisymmetric Levi-Civita symbol, 123 231 312 1; 213 132 321 1 Demonstration that RZ ( ) e iJ z x cos RZ ( ) ( x, y) RZ ( ) y sin For small = , sin x x ' ( x ', y ') cos y y ' x' x y y ' y x RZ ( ) ( x, y) ( x y, y x) ( x, y) ( y x ) x y (1 i ( xp y ypx )) ( x, y) i.e. RZ ( ) (1 i ( xp y ypx )) 1 i J z Hence iJ z RZ ( n ) (1 i J Z )n e n The Lorentz transformations form a group, G ( g1 g2 G if g1 , g 2 G) Rotations R( ) e iJ . / [ Ji , J j ] i ijk J z i ( x y y x ).. , (c. f . J r p) 3 k 1 Angular momentum operator ijk Jk totally antisymmetric Levi-Civita symbol, 123 231 312 1; 213 132 321 1 Derivation of the commutation relations of SO(3) (SU(2)) Rx ( ) Ry ( ) Rx ( ) Ry ( ) 1 0 0 1 0 , small (infinitesimal) 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 Rz ( ) (1 i J z ) 0 0 1 Rx ( ) Ry ( ) Rx ( ) Ry ( ) (1 i J x )(1 i J y )(1 i J x )(1 i J y ) ( J x J y J y J x ) Equating the two equations implies [ J x , J y ] iJ z QED The Lorentz transformations form a group, G ( g1 g2 G if g1 , g 2 G) Rotations R( ) e iJ . / [ Ji , J j ] i J z i ( x y y x ).. , (c. f . J r p) 3 k 1 ijk Jk J 0, 12 ,1,... Representations 0 1 Spin J 1/ 2 Pauli spin matrices 0 i 1 0 2 3 1 0 i 0 0 1 e.g. J 1/ 2 J i i / 2 z Angular momentum operator 1 0 ... 1 (SU(2)) The Klein Gordon equation (1926) Scalar field (J=0) : E p m 2 2 2 Energy eigenvalues (x) 2 t 2 2 m2 E (p2 m2 )1/ 2 ??? Physical interpretation of Quantum Mechanics i t 21m 2 0 Schrödinger equation (S.E.) t i ( S .E.) i (S .E.) * * = .j 0 continuity eq. j 2im ( * * ) 2 “probability density” “probability current” 2 t 2 2 m2 Klein Gordon equation i( * t t ) * Neip. x , 2 E N dV d V 3 x 2E j i( * * ) j ( , j) 2 f p e ip. x 1 2 p0V Normalised free particle solutions Physical interpretation of Quantum Mechanics i t 21m 2 0 Schrödinger equation (S.E.) t i ( S .E.) i (S .E.) * * = .j 0 continuity eq. j 2im ( * * ) 2 “probability density” “probability current” 2 t 2 2 m2 Klein Gordon equation i( * t t ) * Neip. x , 2 E N Negative probability? j i( * * ) j ( , j) 2 f p e ip. x 1 2 p0V Normalised free particle solutions Field theory of Scalar particle – satisfies KG equation ( 1c t , ), ( 1c t , ) ( m ) 0 2 Classical electrodynamics, motion of charge –e in EM potential is obtained by the substitution : Quantum mechanics : A (A0 , A) p p eA i i eA The Klein Gordon equation becomes: ( m2 ) V where V ie( A A ) e2 A2 em 4e 2 The smallness of the EM coupling, 1 137 , Make a “perturbation” expansion of V in powers of means that it is sensible to em