Download Quantum Postulates

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Overview of QM
Statics
 (r, t )   (r ) (t )
H n (r )  En n (r )
M.O. Calculations, Spectroscopy, and
Q. Stat. Mech.
2

ˆ 
ˆ  Vˆ (r)
Hˆ  K  Vˆ (r) 

2m
Translational Motion
2

ˆ 
ˆ
Hˆ 

2m
Rotational Motion
Dynamics
d
ˆ
H  (r, t )  i
 (r, t )
dt
(r, t )   (0)e  (r)
it
 (r, t   )  Uˆ ( ) (r, t )
Mol. dynamics, Q. Comp., Laser Pulse
Methods,2D NMR, and SS NMR, and
spectroscopy.
2

ˆ L
ˆ
Hˆ 
L
2I
Harmonic Motion
Cartesian
P. in Box
ex) STM, Devices
Spherical Polar
Rigid Rotor
Spin
ex) FTS, NMR
Centre of Mass
2

k
ˆ
ˆ
ˆ
H
   (r  req )2
2
2
Vibrations
ex) IR, Raman
Quantum Mechanics for Many Particles
(r1 , r2 , r3 ,..., rk , t )  (r1 , t )(r2 , t )(r3 , t )...(rk , t )
(ri , t )   (ri )i (t )
H n (r1 , r2 , r3 ,..., rk )  En n (r1 , r2 , r3 ,..., rk )
m1
z1
r1
m2
z2
r2
2

ˆ 
ˆ  Vˆ (r , r )
Hˆ  

i
i
ij i
j
i 2mi
i, j
2
zi z j e
ˆ
Vij (ri , r j ) 
r  rj 
2  i
4 o ri  r j
m3
z3
r3
r4
(0,0,0)
m4
z4
En – Energy Levels n – Wavefuntions
Electronic Structure of Mols.
The Wavefunction
 ( x, t )   ( x) (t )
Single Valued
 (t )   (0)eit
Finite and continuous
t
ro
o
 (0)
 (t ) R
e
Im

( x, t ) dx  
2
 ( x, t ) 
 ( x, t ) 
2
14_01fig_PChem.jpg
The Wavefunction
(r1 , r2 , r3 ,.., rk , t )  (r1 , t )(r2 , t )(r3 , t )...(rk , t )
(ri , t )   (r  xi , yi , zi ) )i (t )

(ri , t ) dvi  
2
3
ri  xi i  yi j  zi k 
3
dvi  dx i dyi dzi
 (ri , t ) 
Spherical Polar
Coordinates
3
 (ri , t ) 
2
3
ri  ri sin i cosi i  ri sin i sin i j  ri cosi k
dvi  ri 2 sin i dri di di
14_01fig_PChem.jpg
Probability Distribution
 (r, t )  * (r, t ) (r, t )
 (r, t ) 
Since
2
z  z* z  z 
P(r, t )  * (r, t )(r, t )
P ( R, t ) 
xj yj zj
rj
xi yi zi
ri
Probability of finding the particle at
exactly r, as a function of time.
   P(r, t ) dv   P(r, t ) dv
  P(r, t ) dv
R
   (r, t ) (r, t ) dv
*
R
Probability of finding the particle
between ri and rj, defining the region
R, as a function of time
Probability Distribution and Time
P( R, t )   * (r, t )(r, t ) dv
R
   (r ) (t )  (r) (t ) dv =   (t )* (r)* (r) (t ) dv
*
R
R


*
  (t )   (r)  (r) dv   (t )   (t )* P( R) (t )
R

*
  (t )* (t ) P( R)   (0)* eit (0)eit P( R)
  (0)* (0) P( R)  ro2 P( R)  P( R)
P( R)   (r)* (r) dv
R
Probability Distribution of Wavefunctions
Pn ( R, t )   Pn (r, t ) dv   *n (r, t ) n (r, t ) dv   n* (r ) n (r) dv

R
R
R
= Pn ( R)
Re( ( x, t ))
t
P( x)
Probability of finding a
particle in a given interval is
independent of time and is
determine only by the r.
Measurements are usually an
average over a long time on
the quantum mechanical time
scale and often reflect an
average over a large number
of particles.
In most experiments the
wavefunctions are incoherent.
Normalization of Wavefunctions
The probability of finding a particle in all space, S, must be 100 %.
Pn ( S , t )    *n (r, t ) n (r, t ) dv = 1
S
 P( S )   n* (r ) (r ) dv = 1
S
Therefore wavefunctions must be normalized.
If
 n ( x, t ) is a solution to the Schrödinger equation it must be normalized.
 n ( x, t ) 
 n ( x, t )

S
 n ( x, t )

N
 *n ( x, t ) n ( x, t ) dv
N is the normalization constant.
Probability Distributions and Averages
Observed Distribution of Measurements
Normal Distribution
P(x)
N measurements, xi, with ci repeats, of k possible outcomes.
1 k
x   ci xi
N i1
ci
P( xi )   ci
N
For continuous P( x)  c( x)
variables
k
c
i 1
 c( x)
R
i
k
k
x   P( xi ) xi
 P( x )  1
x   P( x) x dx
 P( x) dx  1
i 1
R
i 1
R
i
Expectation Values
*
*


(
x
,
t
)

x   Pn ( x) x dx  n
n ( x, t ) x dx
R
R
   n ( x)n (t )   n ( x)n (t ) x dx
*
Measurements are
averages in time and
large number of
particles of
observables.
R
 *
 *
    n ( x) n ( x) x dx  n (t )n (t )
R

n (t )*n (t )  ro2  1
*
   n* ( x) x n ( x) dx    n ( x) xˆ n ( x) dx  x
R
R
O    n* ( x)Oˆ  n ( x) dx
R
Expectation values of x.
Every observable has a
corresponding operator
14_01tbl_PChem.jpg
Operator Algebra
Linearity
Addition
Association
ˆ [af ( x)  bf ( x)]  aO
ˆ f ( x)  bO
ˆ f ( x)
O
ˆ  bPˆ ] f ( x)  aO
ˆ f ( x)  bPˆ f ( x)
[aO
ˆ ˆ ˆ  f ( x)  O
ˆ  Pˆ Q
ˆ f ( x)  
OPQ



 
Operator Algebra
Commutation
ˆ ˆ f ( x)  PO
ˆ ˆ f ( x)
OP
ˆ ˆ  PO
ˆ , Pˆ  f ( x) Commutator
ˆ ˆ  f ( x )  O
OP




ˆ , Pˆ ]  0  OP
ˆ ˆ  PO
ˆˆ
[O
Ex) Position and Momentum
ˆˆ x  pˆ x xˆ  ( x)  xp
ˆˆ x ( x)  pˆ x xˆ ( x)
 xˆ, pˆ x  ( x)   xp
 d
 d
 d ( x) d

 x i

(
x
)

i
x

(
x
)

i
x

x

(
x
)


 dx 


dx
dx
 dx 
d ( x) 
 d ( x) dx
 i x
  ( x) 
x   i  ( x)
dx
dx
 dx

  xˆ, pˆ x   i  0
Properties of Hermitian Operators
ˆAT*  A
ˆ
*
ˆ  ( x) dx   ( x) A
ˆ * * ( x) dx

(
x
)
A


S
For matrices
S
For functions
ˆ  ( x)  a  ( x)
A
n
n n
ˆ * * ( x)  a* * ( x)
A
n
n n
*
ˆ ( x) dx   * ( x)a  ( x) dx  a  * ( x) ( x) dx

(
x
)
A
n n
n
n
 n n n
 n
 an
Alternatively
*
ˆ * * ( x) dx   ( x)a* * ( x) dx
ˆ ( x) dx   ( x) A

(
x
)
A
n
n
 n
 n n n
 n
 an*  n ( x) n* ( x) dx
a
*
n
 an*  an  an 
Properties of Hermitian Operators
ˆ  ( x)  a  ( x)
A
n
n n
ˆ  ( x)  a  ( x)
A
m
m m
*
*
ˆ
ˆ

(
x
)
A

(
x
)
dx


(
x
)
A

n
m ( x) dx

 n
*
m
*
ˆ ( x) dx  a  * ( x) ( x) dx

(
x
)
A
n
n m
n
 m
*
*
* *
ˆ

(
x
)
A

(
x
)
dx


(
x
)
a
m
 n
 n m m ( x) dx
 am  n ( x) m* ( x) dx
Properties of Hermitian Operators
 an  m* ( x) n ( x) dx  am  n ( x) m* ( x) dx  0


(an  am )  m* ( x) n ( x) dx  0
  m* ( x) n ( x) dx   n ,m when an  am  n, m
Orthonormal set
  m* ( x) n ( x) dx  0
Not orthogonal
when an  am
Degenerate eigenvalues
Superposition Principle
H n (r )  En n (r )
En
Eigen Value
Eigen Relationship
 n (r)
Set of Eigenfunctions
Consider  m (r ) and n (r) share the same eigenvalue En= Em=E
Any linear combination of eigen functions of degenerate eigenvlaues is an
eigenfunction:
H  a n (r)  b m (r)   Ha n (r)  Hb m (r)
 aH n (r )  bH m (r )
 aEn n (r)  bEm m (r)
 aE n (r)  bE m (r)
 E  a n (r)  b m (r) 
The Momentum Operator is Hermitian
?
* *
ˆ
ˆ

(
x
)
p

(
x
)
dx


(
x
)
p
 ( x) dx


*
S
S

d

S  ( x) pˆ ( x) dx    ( x) i dx   ( x) dx
*
*

d
 i   ( x)  ( x) dx
dx

*
Integration by parts
b
 u dv  uv
a
b
b
a
  vdu
a
d
u   ( x) & dv   ( x)dx
dx
*
d *
 du   ( x)dx & v   ( x)
dx
The Momentum Operator is Hermitian


d
d *
*
 ( x) dx  ( x) dx   ( x) ( x)     ( x) dx ( x) dx
*

d *
 (0  0)    ( x)  ( x) dx
dx



d
i   ( x)  ( x) dx  i
dx

d *
  ( x) dx ( x) dx
*

 d *
   ( x ) i
 ( x) dx

 dx 



* *
ˆ

(
x
)
p
 ( x) dx


wavefunctions are
finite and therefore
converge to zero as
infinity
Operators with Simultaneous Eigenfunctions Commute.
ˆ  ( x)  a  ( x)
A
n
n n
ˆ  ( x)  b  ( x)
B
n
n n
ˆ ,B
ˆ ˆ  BA
ˆ  ( x)   AB
ˆ ˆ  ( x)  AB
ˆ ˆ  ( x)  BA
ˆ ˆ  ( x)
A
n
n
n
n




ˆ b  ( x)  B
ˆ a  ( x)
A
n n
n n
ˆ  ( x)  a B
ˆ  ( x)
 bn A
n
n
n
 bn an n ( x)  anbn n ( x)
  bn an  anbn  n ( x)
0
ˆ ,B
ˆ ˆ  BA
ˆ ˆ  ( x)  BA
ˆ   0  AB
ˆ ˆ  AB
ˆ ˆ  ( x)
A
n
n


Order of operations does not matter only if A and B commute.
Description of a Quantum Mechanical System
d
ˆ
H  n (r, t )  i
 n (r, t )
H n (r )  En n (r )
dt
 n (r, t )   n (r)n (t ) State
En Energy Level
n Quantum number
 3 (r )
E3
E2
E1
E0
0
 2 (r )
1st excited State
Ground State
 1 (r )
 0 (r )
Hˆ (t )
n
   * ( x) * (t ) Hˆ  ( x) (t ) dx
S
   n ( x)* Hˆ  n ( x) dx
S
   n ( x)* En n ( x) dx  En
S
Energy levels are independent of time.
Eigenfunctions are stationary states.
n (r, t   )  Uˆ ( )n (r, t )  ein n (t ) n (r)
The system stays in the
same state, even though
the phase of the function
is time dependent.
Expectation Values Revisited
O(t )   *n ( x, t )Oˆ  n ( x, t ) dx
R
*
  Uˆ (t ) n ( x,0)  Oˆ Uˆ (t ) n ( x,0)  dx
R

  e
R 

ˆ 
 iHt




*
   iHtˆ 

 n ( x,0)  Oˆ e    n ( x,0)  dx
 

 

ˆ 
ˆ 
 iHt
 iHt









   *n ( x,0)e    Oˆ e    n ( x,0)  dx
 

R 

 

  iHtˆ   iHtˆ  
ˆ     ( x,0)dx
  *n ( x,0)  e   Oe
n


R


Expectation Values Revisited
  iHtˆ   iHtˆ  
ˆ     ( x,0)dx
O(t )   *n ( x,0)  e   Oe
n


R


   n* ( x) * (0)Oˆ (t ) n ( x) (0)dx
R
   n* ( x)Oˆ (t ) n ( x)dx
R
Oˆ (t )  e
ˆ 
 iHt




ˆ
Oe
ˆ 
 iHt




ˆ (t )
 U (t )OU
1
Expectation Values Revisited
Consider
e
ˆ 
 iHt





U (t )Oˆ  e
1
ˆ 
 iHt




Oˆ
k
k
 1  iHt
ˆ  
1  it  ˆ k ˆ
ˆ
ˆ


O   
 O     H O
 k k ! 

k k !
 
ˆ ˆ  HO
ˆˆ
If [ Hˆ , Oˆ ]  0  OH
ˆ ˆ 2  OHH
ˆ ˆ ˆ  HOH
ˆ ˆ ˆ  HHO
ˆ ˆ ˆ  Hˆ 2Oˆ
 OH
ˆ ˆ k  Hˆ k Oˆ
 OH
k
Repeat k-1 times
k
1  it  ˆ k ˆ
1  it  ˆ ˆ k
     H O      OH


k k !
k k !
Expectation Values Revisited
e
ˆ 
 iHt





ˆ 
 iHt
k
k
 1  iHt

ˆ  


1
it


k
ˆ  
Oˆ     
  Oˆ  Oˆ     Hˆ  Oe
 k k ! 

k k !
 
1
1
ˆ
ˆ

U (t )O  OU (t )  U (t ), Oˆ   0
1
1
1
ˆ
ˆ
ˆ
 O(t )  U (t )OU (t )  OU U (t )  Oˆ
O(t )    n* ( x)Oˆ (t ) n ( x)dx =   n* ( x)Oˆ n ( x)dx= Oˆ
R
R
Only if [ Hˆ , Oˆ ]  0
Non Stationary States
If [ Hˆ , Oˆ ]  0
ˆ (t )
 Oˆ (t )  U 1 (t )OU
 Oˆ cos(t )  Pˆ cos(t )
Which means that the observable is time dependent.
Consider that an additional interaction is introduced modifying the
Hamiltonian:
Hˆ '  Hˆ  Oˆ
where
 Hˆ , Oˆ   0


Non Stationary States
The states under this new Hamiltonian are
En (t )
n (r, t )
The Energy Levels become time dependent
n (r, t )   an (t ) n (r, t )
n
The state can change quantum number with time under the influence of a
non-commuting operator.
Non-stationary states!!!
The act of measurement can cause the system to change state
Indeterminacy??
A non-commuting operators can therefore induce the state to change
over time. (i.e the state can be influenced externally!!!)
Related documents