Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Overview of QM Statics (r, t ) (r ) (t ) H n (r ) En n (r ) M.O. Calculations, Spectroscopy, and Q. Stat. Mech. 2 ˆ ˆ Vˆ (r) Hˆ K Vˆ (r) 2m Translational Motion 2 ˆ ˆ Hˆ 2m Rotational Motion Dynamics d ˆ H (r, t ) i (r, t ) dt (r, t ) (0)e (r) it (r, t ) Uˆ ( ) (r, t ) Mol. dynamics, Q. Comp., Laser Pulse Methods,2D NMR, and SS NMR, and spectroscopy. 2 ˆ L ˆ Hˆ L 2I Harmonic Motion Cartesian P. in Box ex) STM, Devices Spherical Polar Rigid Rotor Spin ex) FTS, NMR Centre of Mass 2 k ˆ ˆ ˆ H (r req )2 2 2 Vibrations ex) IR, Raman Quantum Mechanics for Many Particles (r1 , r2 , r3 ,..., rk , t ) (r1 , t )(r2 , t )(r3 , t )...(rk , t ) (ri , t ) (ri )i (t ) H n (r1 , r2 , r3 ,..., rk ) En n (r1 , r2 , r3 ,..., rk ) m1 z1 r1 m2 z2 r2 2 ˆ ˆ Vˆ (r , r ) Hˆ i i ij i j i 2mi i, j 2 zi z j e ˆ Vij (ri , r j ) r rj 2 i 4 o ri r j m3 z3 r3 r4 (0,0,0) m4 z4 En – Energy Levels n – Wavefuntions Electronic Structure of Mols. The Wavefunction ( x, t ) ( x) (t ) Single Valued (t ) (0)eit Finite and continuous t ro o (0) (t ) R e Im ( x, t ) dx 2 ( x, t ) ( x, t ) 2 14_01fig_PChem.jpg The Wavefunction (r1 , r2 , r3 ,.., rk , t ) (r1 , t )(r2 , t )(r3 , t )...(rk , t ) (ri , t ) (r xi , yi , zi ) )i (t ) (ri , t ) dvi 2 3 ri xi i yi j zi k 3 dvi dx i dyi dzi (ri , t ) Spherical Polar Coordinates 3 (ri , t ) 2 3 ri ri sin i cosi i ri sin i sin i j ri cosi k dvi ri 2 sin i dri di di 14_01fig_PChem.jpg Probability Distribution (r, t ) * (r, t ) (r, t ) (r, t ) Since 2 z z* z z P(r, t ) * (r, t )(r, t ) P ( R, t ) xj yj zj rj xi yi zi ri Probability of finding the particle at exactly r, as a function of time. P(r, t ) dv P(r, t ) dv P(r, t ) dv R (r, t ) (r, t ) dv * R Probability of finding the particle between ri and rj, defining the region R, as a function of time Probability Distribution and Time P( R, t ) * (r, t )(r, t ) dv R (r ) (t ) (r) (t ) dv = (t )* (r)* (r) (t ) dv * R R * (t ) (r) (r) dv (t ) (t )* P( R) (t ) R * (t )* (t ) P( R) (0)* eit (0)eit P( R) (0)* (0) P( R) ro2 P( R) P( R) P( R) (r)* (r) dv R Probability Distribution of Wavefunctions Pn ( R, t ) Pn (r, t ) dv *n (r, t ) n (r, t ) dv n* (r ) n (r) dv R R R = Pn ( R) Re( ( x, t )) t P( x) Probability of finding a particle in a given interval is independent of time and is determine only by the r. Measurements are usually an average over a long time on the quantum mechanical time scale and often reflect an average over a large number of particles. In most experiments the wavefunctions are incoherent. Normalization of Wavefunctions The probability of finding a particle in all space, S, must be 100 %. Pn ( S , t ) *n (r, t ) n (r, t ) dv = 1 S P( S ) n* (r ) (r ) dv = 1 S Therefore wavefunctions must be normalized. If n ( x, t ) is a solution to the Schrödinger equation it must be normalized. n ( x, t ) n ( x, t ) S n ( x, t ) N *n ( x, t ) n ( x, t ) dv N is the normalization constant. Probability Distributions and Averages Observed Distribution of Measurements Normal Distribution P(x) N measurements, xi, with ci repeats, of k possible outcomes. 1 k x ci xi N i1 ci P( xi ) ci N For continuous P( x) c( x) variables k c i 1 c( x) R i k k x P( xi ) xi P( x ) 1 x P( x) x dx P( x) dx 1 i 1 R i 1 R i Expectation Values * * ( x , t ) x Pn ( x) x dx n n ( x, t ) x dx R R n ( x)n (t ) n ( x)n (t ) x dx * Measurements are averages in time and large number of particles of observables. R * * n ( x) n ( x) x dx n (t )n (t ) R n (t )*n (t ) ro2 1 * n* ( x) x n ( x) dx n ( x) xˆ n ( x) dx x R R O n* ( x)Oˆ n ( x) dx R Expectation values of x. Every observable has a corresponding operator 14_01tbl_PChem.jpg Operator Algebra Linearity Addition Association ˆ [af ( x) bf ( x)] aO ˆ f ( x) bO ˆ f ( x) O ˆ bPˆ ] f ( x) aO ˆ f ( x) bPˆ f ( x) [aO ˆ ˆ ˆ f ( x) O ˆ Pˆ Q ˆ f ( x) OPQ Operator Algebra Commutation ˆ ˆ f ( x) PO ˆ ˆ f ( x) OP ˆ ˆ PO ˆ , Pˆ f ( x) Commutator ˆ ˆ f ( x ) O OP ˆ , Pˆ ] 0 OP ˆ ˆ PO ˆˆ [O Ex) Position and Momentum ˆˆ x pˆ x xˆ ( x) xp ˆˆ x ( x) pˆ x xˆ ( x) xˆ, pˆ x ( x) xp d d d ( x) d x i ( x ) i x ( x ) i x x ( x ) dx dx dx dx d ( x) d ( x) dx i x ( x) x i ( x) dx dx dx xˆ, pˆ x i 0 Properties of Hermitian Operators ˆAT* A ˆ * ˆ ( x) dx ( x) A ˆ * * ( x) dx ( x ) A S For matrices S For functions ˆ ( x) a ( x) A n n n ˆ * * ( x) a* * ( x) A n n n * ˆ ( x) dx * ( x)a ( x) dx a * ( x) ( x) dx ( x ) A n n n n n n n n an Alternatively * ˆ * * ( x) dx ( x)a* * ( x) dx ˆ ( x) dx ( x) A ( x ) A n n n n n n n an* n ( x) n* ( x) dx a * n an* an an Properties of Hermitian Operators ˆ ( x) a ( x) A n n n ˆ ( x) a ( x) A m m m * * ˆ ˆ ( x ) A ( x ) dx ( x ) A n m ( x) dx n * m * ˆ ( x) dx a * ( x) ( x) dx ( x ) A n n m n m * * * * ˆ ( x ) A ( x ) dx ( x ) a m n n m m ( x) dx am n ( x) m* ( x) dx Properties of Hermitian Operators an m* ( x) n ( x) dx am n ( x) m* ( x) dx 0 (an am ) m* ( x) n ( x) dx 0 m* ( x) n ( x) dx n ,m when an am n, m Orthonormal set m* ( x) n ( x) dx 0 Not orthogonal when an am Degenerate eigenvalues Superposition Principle H n (r ) En n (r ) En Eigen Value Eigen Relationship n (r) Set of Eigenfunctions Consider m (r ) and n (r) share the same eigenvalue En= Em=E Any linear combination of eigen functions of degenerate eigenvlaues is an eigenfunction: H a n (r) b m (r) Ha n (r) Hb m (r) aH n (r ) bH m (r ) aEn n (r) bEm m (r) aE n (r) bE m (r) E a n (r) b m (r) The Momentum Operator is Hermitian ? * * ˆ ˆ ( x ) p ( x ) dx ( x ) p ( x) dx * S S d S ( x) pˆ ( x) dx ( x) i dx ( x) dx * * d i ( x) ( x) dx dx * Integration by parts b u dv uv a b b a vdu a d u ( x) & dv ( x)dx dx * d * du ( x)dx & v ( x) dx The Momentum Operator is Hermitian d d * * ( x) dx ( x) dx ( x) ( x) ( x) dx ( x) dx * d * (0 0) ( x) ( x) dx dx d i ( x) ( x) dx i dx d * ( x) dx ( x) dx * d * ( x ) i ( x) dx dx * * ˆ ( x ) p ( x) dx wavefunctions are finite and therefore converge to zero as infinity Operators with Simultaneous Eigenfunctions Commute. ˆ ( x) a ( x) A n n n ˆ ( x) b ( x) B n n n ˆ ,B ˆ ˆ BA ˆ ( x) AB ˆ ˆ ( x) AB ˆ ˆ ( x) BA ˆ ˆ ( x) A n n n n ˆ b ( x) B ˆ a ( x) A n n n n ˆ ( x) a B ˆ ( x) bn A n n n bn an n ( x) anbn n ( x) bn an anbn n ( x) 0 ˆ ,B ˆ ˆ BA ˆ ˆ ( x) BA ˆ 0 AB ˆ ˆ AB ˆ ˆ ( x) A n n Order of operations does not matter only if A and B commute. Description of a Quantum Mechanical System d ˆ H n (r, t ) i n (r, t ) H n (r ) En n (r ) dt n (r, t ) n (r)n (t ) State En Energy Level n Quantum number 3 (r ) E3 E2 E1 E0 0 2 (r ) 1st excited State Ground State 1 (r ) 0 (r ) Hˆ (t ) n * ( x) * (t ) Hˆ ( x) (t ) dx S n ( x)* Hˆ n ( x) dx S n ( x)* En n ( x) dx En S Energy levels are independent of time. Eigenfunctions are stationary states. n (r, t ) Uˆ ( )n (r, t ) ein n (t ) n (r) The system stays in the same state, even though the phase of the function is time dependent. Expectation Values Revisited O(t ) *n ( x, t )Oˆ n ( x, t ) dx R * Uˆ (t ) n ( x,0) Oˆ Uˆ (t ) n ( x,0) dx R e R ˆ iHt * iHtˆ n ( x,0) Oˆ e n ( x,0) dx ˆ ˆ iHt iHt *n ( x,0)e Oˆ e n ( x,0) dx R iHtˆ iHtˆ ˆ ( x,0)dx *n ( x,0) e Oe n R Expectation Values Revisited iHtˆ iHtˆ ˆ ( x,0)dx O(t ) *n ( x,0) e Oe n R n* ( x) * (0)Oˆ (t ) n ( x) (0)dx R n* ( x)Oˆ (t ) n ( x)dx R Oˆ (t ) e ˆ iHt ˆ Oe ˆ iHt ˆ (t ) U (t )OU 1 Expectation Values Revisited Consider e ˆ iHt U (t )Oˆ e 1 ˆ iHt Oˆ k k 1 iHt ˆ 1 it ˆ k ˆ ˆ ˆ O O H O k k ! k k ! ˆ ˆ HO ˆˆ If [ Hˆ , Oˆ ] 0 OH ˆ ˆ 2 OHH ˆ ˆ ˆ HOH ˆ ˆ ˆ HHO ˆ ˆ ˆ Hˆ 2Oˆ OH ˆ ˆ k Hˆ k Oˆ OH k Repeat k-1 times k 1 it ˆ k ˆ 1 it ˆ ˆ k H O OH k k ! k k ! Expectation Values Revisited e ˆ iHt ˆ iHt k k 1 iHt ˆ 1 it k ˆ Oˆ Oˆ Oˆ Hˆ Oe k k ! k k ! 1 1 ˆ ˆ U (t )O OU (t ) U (t ), Oˆ 0 1 1 1 ˆ ˆ ˆ O(t ) U (t )OU (t ) OU U (t ) Oˆ O(t ) n* ( x)Oˆ (t ) n ( x)dx = n* ( x)Oˆ n ( x)dx= Oˆ R R Only if [ Hˆ , Oˆ ] 0 Non Stationary States If [ Hˆ , Oˆ ] 0 ˆ (t ) Oˆ (t ) U 1 (t )OU Oˆ cos(t ) Pˆ cos(t ) Which means that the observable is time dependent. Consider that an additional interaction is introduced modifying the Hamiltonian: Hˆ ' Hˆ Oˆ where Hˆ , Oˆ 0 Non Stationary States The states under this new Hamiltonian are En (t ) n (r, t ) The Energy Levels become time dependent n (r, t ) an (t ) n (r, t ) n The state can change quantum number with time under the influence of a non-commuting operator. Non-stationary states!!! The act of measurement can cause the system to change state Indeterminacy?? A non-commuting operators can therefore induce the state to change over time. (i.e the state can be influenced externally!!!)