Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Quantum Mechanics p2 E 0 2m h2 2 ih 0 t 2m Classical – non relativistic Quantum Mechanical : Schrodinger eq Quantum Mechanics p2 E 0 2m 2 i 2 0 t 2m E 2 p 2 m2 2 t 2 2 m2 Classical – non relativistic Quantum Mechanical : Schrodinger eq Classical – relativistic (Natural units h c 1) Quantum Mechanical - relativistic : Klein-Gordon (Schrodinger) equation Relativistic QM - The Klein Gordon equation (1926) (x) Scalar particle (field) (J=0) : E p m 2 2 2 Energy eigenvalues 2 t 2 2 m2 (natural units) E (p2 m2 )1/ 2 ??? 1927 Dirac tried to eliminate negative solutions by writing a relativistic equation linear in E (a theory of fermions) 1934 Pauli and Weisskopf revived KG equation with E<0 solutions as E>0 solutions for particles of opposite charge (antiparticles). Unlike Dirac’s hole theory this interpretation is applicable to bosons (integer spin) as well as to fermions (half integer spin). As we shall see the antiparticle states make the field theory causal Physical interpretation of Quantum Mechanics i t 21m 2 0 Schrödinger equation (S.E.) t i ( S .E.) i (S .E.) * * = .j 0 continuity eq. 2 “probability density” QuickTime™ and a decompressor are needed to see this picture. j 2im ( * * ) “probability current” Divergence Theorem .M dV= M .n dS Physical interpretation of Quantum Mechanics i t 21m 2 0 Schrödinger equation (S.E.) t i ( S .E.) i (S .E.) * * = .j 0 continuity eq. j 2im ( * * ) 2 “probability density” “probability current” 2 t 2 2 m2 Klein Gordon equation 2E N 2 Negative probability? Neip. x , 2 E N dV d V i( * t t ) * 3 x 2E j i( * * ) j ( , j) 2 f p e ip. x 1 2 p0V Normalised free particle solutions Physical interpretation of Quantum Mechanics i t 21m 2 0 Schrödinger equation (S.E.) t i ( S .E.) i (S .E.) * * = .j 0 continuity eq. j 2im ( * * ) 2 “probability density” “probability current” 2 t 2 2 m2 Klein Gordon equation i( Pauli and Weisskopf * t * t ) j e ( , j) jEM t .j 0 = j j i( * * ) j ( , j) Physical interpretation of Quantum Mechanics i t 21m 2 0 Schrödinger equation (S.E.) t i ( S .E.) i (S .E.) * * = .j 0 continuity eq. j 2im ( * * ) 2 “probability density” “probability current” 2 t 2 2 m2 Klein Gordon equation EM i( Pauli and Weisskopf * t * t ) j e ( , j) jEM t .j 0 = j j i( * * ) j ( , j) Relativistic QM - The Klein Gordon equation (1926) (x) Scalar particle (field) (J=0) : 2 t 2 2 m2 E p m 2 2 2 Relativistic notation : ( m2 ) 0 (natural units) 4 vector notation A ( A0 , A), B ( B0 , B) contravariant A ( A0 , A), B ( B0 , B) A g A covariant A g A A.B A B A B A0 B0 A.B 4 vectors E ( , p) p c ( , ) ct (ct , x) x ( , ) ct p i p p E 2 p 2 2 Field theory of Scalar particle – satisfies KG equation ( m2 ) 0 Classical electrodynamics, motion of charge –e in EM potential is obtained by the substitution : Quantum mechanics : A (A0 , A) p p eA i i eA The Klein Gordon equation becomes: ( m2 ) V where V ie( A A ) e2 A2 em 4e 2 The smallness of the EM coupling, 1 137 , Make a “perturbation” expansion of V in powers of V means that it is sensible to em ie( A A ) The pion propagator Want to solve : Solution : where and ( m2 ) V ( x) ( x) d 4 x ' F ( x ' x)V ( x ') ( x ') ( m2 ) 0 ( m2 ) F ( x ' x) 4 ( x ' x) Feynman propagator d 4 4 Dirac Delta function x ' ( x ' x) f ( x ') f ( x) The pion propagator ( m2 ) V Want to solve : ( x) ( x) d 4 x ' F ( x ' x)V ( x ') ( x ') Solution : ( m2 ) 0 where ( m2 ) F ( x ' x) 4 ( x ' x) and Simplest to solve for propagator in momentum space by taking Fourier transform 1 (2 2 2) 2 ip .( x ' x ) e ( m2 ) F ( x ' x)d 4 ( x ' x) (221 )2 e ip.( x ' x ) 4 ( x ' x)d 4 ( x ' x) 2 ( p 2 m 2 ) F ( p) •F ( p) 1 (2 )2 1 , p 2 m2 i 1 (2 )2 F (x) (2 )4 d p e 1 4 ip.x 1 p 2 m2 i The Born series ( x) ( x) d x ' F ( x ' x)V ( x ') ( x ') 4 Since V(x) is small can solve this equation iteratively : ( x) ( x) d 4 x ' F ( x ' x)V ( x ') ( x ') d 4 x '' d 4 x ''' F ( x '' x)V ( x '') F ( x ''' x '')V ( x ''') ( x ''') ... x Interpretation : V ( x ') x' x ''' x '' F ( x ' x) But energy eigenvalues E (p2 m2 )1/ 2 ??? Feynman – Stuckelberg interpretation ( E 0) t e ( E 0) ei ( E )( t ) iEt Two different time orderings giving same observable event : t1 t2 time t2 t1 space t1 t2 t1 t2 t1 t2 time space p p2 m2 F ( x ' x) (2 )4 d p e 1 4 ip.( x ' x ) 1 p2 m2 i i (2 )3 2 e d3 p 1/ 2 i p t ' t ip.(x'-x) p (p0 integral most conveniently evaluated using contour integration via Cauchy’s theorem ) F ( x) (2 )4 d p e 4 1 p m i 2 2 p p m i 2 2 o F ( x ' x) (21 )4 d p e 3 2 i p.( x ' x ) ip. x 1 p m2 i 2 p0 p m dp p 2 1/ 2 eip0 (t 't ) 0 0 2 p i p i i p0 p i } I If t '- t 0, choose contour such that p0 ipI I i i e p t ' t p ( t ' t ) If t '- t 0, choose contour such that p0 ipI I i i e p ( pI +ve) e ip0 (t 't ) e pI (t 't ) t t ' p ( t ' t ) ( pI +ve) e ip0 (t 't ) e pI (t 't ) t1 t2 t1 t2 time space F ( x ' x) (2 )4 d p e 4 1 ip.( x ' x ) 1 p 2 m2 i i (2 )3 2 e d3 p i p t ' t ip .( x ' x ) p F ( x x ') i d p f ( x ') f ( x) (t ' t ) i d p f ( x ') f p* ( x) (t t ') 3 p where f p e ip. x 1 2 p0V * p 3 p are positive and negative energy solutions to free KG equation