Download S. Mukhin

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Quantum Order of Fermions :
Broken Matsubara Time
Translations and Quantum Order
Fingerprints
S.I. Mukhin
Theoretical Physics & Quantum Technologies Department,
Moscow Institute for Steel & Alloys, Moscow, Russia
Serguey Brazovski
Jan Zaanen
QUANTUM ORDER vs CLASSICAL ORDER
CLASSICAL CONDENSATES describe CLASSICAL BROKEN SYMMETRY STATES
(examples)
•BROKEN SPACE TRANSLATIONS with CHARGE DENSITY WAVE
Thermodynamic expectation value :
CDW makes Hamiltonian quadratic:
n̂i,  n̂i,  (ri )
U n̂i,n̂i,  i ci,† ci,
•BROKEN SPIN SYMMETRY with SPIN DENSITY WAVE
Thermodynamic expectation value :
SDW makes Hamiltonian quadratic:
 (ri )
Sz (ri )
s  n̂i,  n̂i,  Sz (ri )
U n̂i,n̂i,  Sz (ri ) ci,† ci,
 sc (i, j;  )
Thermodynamic expectation value :
CLASSICAL ORDER PARAMETERS:
 c j, ci,   sc (i, j;  )
(ri ), Sz (ri ), sc (i, j;  )
QUANTUM ORDER vs CLASSICAL ORDER
CLASSICAL CONDENSATES describe CLASSICAL BROKEN SYMMETRY STATES
(examples)
•BROKEN SPACE TRANSLATIONS with CHARGE DENSITY WAVE
Thermodynamic expectation value :
CDW makes Hamiltonian quadratic:
n̂i,  n̂i,  (ri )
n̂i,n̂i,  i ci,† ci,
•BROKEN SPIN SYMMETRY with SPIN DENSITY WAVE
Thermodynamic expectation value :
SDW makes Hamiltonian quadratic:
Sz (ri )
s  n̂i,  n̂i,  Sz (ri )
n̂i,n̂i,  Sz (ri ) ci,† ci,
•BROKEN GUAGE SYMMETRY with SUPERCONDUCTING ORDER
Thermodynamic expectation value :
CLASSICAL ORDER PARAMETERS:
 (ri )
 sc (i, j;  )
 c j, ci,   sc (i, j;  )
(ri ), Sz (ri ), sc (i, j;  )
QUANTUM ORDER vs CLASSICAL ORDER
CLASSICAL CONDENSATES describe CLASSICAL BROKEN SYMMETRY STATES
(examples)
•BROKEN SPACE TRANSLATIONS with CHARGE DENSITY WAVE
Thermodynamic expectation value :
CDW makes Hamiltonian quadratic:
n̂i,  n̂i,  (ri )
n̂i,n̂i,  i ci,† ci,
•BROKEN SPIN SYMMETRY with SPIN DENSITY WAVE
Thermodynamic expectation value :
SDW makes Hamiltonian quadratic:
Sz (ri )
s  n̂i,  n̂i,  Sz (ri )
n̂i,n̂i,  Sz (ri ) ci,† ci,
•BROKEN GUAGE SYMMETRY with SUPERCONDUCTING ORDER
Thermodynamic expectation value :
SC makes Hamiltonian quadratic:
CLASSICAL ORDER PARAMETERS:
 (ri )
 sc (i, j;  )
 c j, ci,   sc (i, j;  )
c j, ci, ci,† c†j,   sc (i, j;  )ci,† c†j,
(ri ), Sz (ri ), sc (i, j;  )
QUANTUM ORDER vs CLASSICAL ORDER
CLASSICAL ROUTE OF MANY-BODY PHYSICS
 Ĥ 
Z  Tr exp 
  partition function; F  kBT ln Z  free energy

 kBT 

Hamiltonian is quadratic form of fermionic operators under the CLASSICAL
ORDER PARAMETER(S):
H mf  t
V
c
i, j , 

i, j , 
†
i,  j, 
c

 U   c c  Sz (ri ) c c
i
†
i i,  i, 

†
i,  i, 

 sc (i, j;  )ci,† c†j,   h.c.    n̂i,
i.
e.g. for Hubbard t-U-V model
Free energy F is minimized with respect to the CLASSICAL ORDER
PARAMETER(S) and a phase diagram of the system is found:
F  i ,Sz ,  sc  0
What is Stratonovich transformation ?
A toy example:

 Ĥ 
Z  Tr exp 
  partition function;
 kBT 


2


y
1/ 2
exp gA  A   
  exp  g  exp 2yAdy


quadratic in A  y  Stratonovich 'field ' linear in A 
A sophisticated example:
 1 
1

;    0,
  Matsubara (imaginary) time
kBT
 kBT 
How to linearize exponential of
non-commuting operators?
  †

exp   g     d 
 0

†  ,     non-commuting quantum operators;
General Hubbard-Stratonovich transformation
  †

exp   g     d  
 0


'quadratic' in  


linear in  



2

 







†
  D  D  exp   d
T
exp
 
  d Â      h.c.
g 
 0
 0






    Hubbard  Stratonovich fields, that depend on Matsubara' s time 
QUANTUM ORDER HS-field
2

 








†
D


D


exp

d

T
exp
d

Â




     h.c.





0

g 
 0


2
 
 

0   
†
 exp   d
 T exp   d Â  0    h.c. 
g 
 0

 0








0    QUANTUM ORDER HS field, that depends on Matsubara time 
If there exists a saddle point Hubbard-Stratonovich field, that dominates
the path-integral, then it is the ‘QUANTUM ORDER’ of the problem
QUANTUM ORDER vs CLASSICAL ORDER
SYMMETRY BREAKING QUANTUM CONDENSATES
OF
HUBBARD-STRATONOVICH FIELDS
Example
3D+1 EUCLIDIAN ACTION OF FERMIONS WITH BROKEN
MATSUBARA TIME TRANSLATIONS:
rr
iQr
HS field : Sz ( ,r)  S( )e
rr
iQr
 S ( )e

Sz ( ,ri )  QUANTUM ORDER PARAMETER :
H HS  t

i, j , 
ci,† c j,   Sz ( ,ri )  ci,† ci, ;
i, 
Sz ( , ri )
1/T
0

1 
Sz   
, r   Sz ( , ri )- periodicity condition for HS fields
kBT  i

Self-consistency equation for HS field that breaks Matsubara axis
translations :


S( )  M  sn   Q  is Matsubara  time  dependent,
hence, the self  consistency equation is a functional equation!
r
Sz ( , r )
r
r
 n 
 F  Sz ( , ri )  0 
  tanh    n ( , r ){ M Ĥ HS } n ( , r )
 2
U
n
as compared with Classical Order self-consistent algebraic equation :

{Úqr2  M 2 }1/2  t qr 
M
M
   tanh
 r2
2 1/2
r
U
2T
q 
 {Úq  M }
HS field: exact solution, that breaks Matsubara axis translations
S.I. Mukhin, J. Supercond. & Novel Magn, v. 24, 1165-71 (2011)
S(τ)=k τQ-1sn{τ/τQ, k}; sn is Jacobi snoidal elliptic function,
 Q  n kBT; n  1,2....
HS QUANTUM ORDER at DIFFERENT TEMPERATURES
IS COMMENSURATE WITH EUCLIDIAN 3D+1 SLAB
 Q  is 'quantum lattice' constant along the Matsubara axis
nT=const
So, why quantum orders are so rare ? Or why we do not see them ?
The (first) self-consistent solution HS breaking Matsubara axis translations is
found for the Hubbard model with ‘spoiled’ nesting at the bare 2D Fermi
surface
S.I. Mukhin , J. Supercond. & Novel Magn, v. 24, 1165-71 (2011).
QUANTUM ORDER PARAMETER (QOP) – CONDENSED (DYNAMIC) HUBBARDSTRATONOVICH FIELD:
a) QOP GREEN’S FUNCTION HAS ONLY 2nd-ORDER POLES – QOP IS DIRECTLY
‘INVISIBLE’ (‘DARK MATTER’ of QUANTUM-CONDENSED BOSE-PAIRS)
a)THE “FINGERPRINTS” OF QOP in FERMIONIC SYSTEM: PSEUDO-GAP, ‘LIGHT
FERMIONS’, COMMENSURATION JUMPS OF QOP (MATSUBARA) PERIODICITY
WHEN T-> 0, etc.
c)EFFECTIVE EUCLIDIAN ACTION OF QOP and its GOLDSTONE MODES:
PERIODIC SOLUTIONS of the Schrödinger Equation with Weierstrass
periodic potential
FREE ENERGIES WITH HS QOP versus FREE ENERGIES WITH
CLASSICAL ORDER PARAMETER COP: HOW QUANTUM ‘FIGHTS’ CLASSICAL
CALCULATED PHASE DIAGRAM
DISORDERING PARAMETER that FAVORS QUANTUM ORDER
Definition of the NESTING in ANY-D case :
Complete nesting condition:
“ANTI-NESTING” PARAMETER :
QUANTUM ORDER DOMAIN:
tq  0
tq  0
So, why quantum orders are so rare ? Or why we do not see them ?
GREEN’S FUNCTION of the HS FIELD ( QOP)


r
r
r
r
K  T  ( 1 , r1 ) ( 1 , r1 )  ( 2 , r2 )  ( 2 , r2 )  
r
r
2
 Z
1 Sz ( 1 , r1 )Sz ( 2 , r2 )

r
r
2
 Sz ( 1 , r1 ) Sz ( 2 , r2 ) Z
U
r
r
r
Usual COP -> Bragg peaks: K q,        q  K n

n
What “Bragg peaks” are predicted for QOP ?

So, why quantum orders are so rare ? Or why we do not see them ?
Definition of the averaging <…> on the mean-field level :
r r r
cos(Q·(r1  r2 )) 
r r
K( 1   2 , r1  r2 ) 
Sz ( 1   0 )Sz ( 2   0 )d 0
2

0
U
ANALYTICAL EXPRESSION for THE QUANTUM ORDER PARAMETER (HS):
rr
iQr
Sz ( ,r)  S( )e
rr
iQr
 S ( )( )e
nesting wave-vector Q;
The ENVELOPE FUNCTION CAN BE EXPRESSED AS :
sin( m )
;
 (2m  1)q 
m 0
sinh 


2
 m  2 nT (2m  1); q   K(k  ) / K(k)

S( )  4 nT 
So, why quantum orders are so rare ? Or why we do not see them ?
THE QOP GREEN’S FUNCTION - ANALYTIC SOLUTION
rr
(4 nT ) cos( m )cos(Q·r )
r
K( , r )  
2
2  (2m  1)q 
m 0
2U sinh 


2

2
THE ANALYTIC CONTINUATION TO THE REAL FREQUENCES AXIS:


k
Tn
1
 kBTn
R
B
K    

2  
2 m  %T2 4   m 
2sin 2 (  i )T2 4 
T2  K  (KnkBT ); %   i
So, NO BRAGG PEAKS come from QOP!
So, why quantum orders are so rare ? Or why we do not see them ?
QUNTUM ORDER PARAMETER IS DIRECTLY “INVISIBLE” !
(HIDDEN ORDER)
Do we have “dark matter here” ???
SCATTERING CROSS-SECTION OF THE ORDER PARAMETER FIELD
(see Abrikosov,Gor’kov,Dzyaloshiskii)
BUT EXCHANGE OF ENERGY e.g. of NEUTRONS WITH HS IS ZERO (!) :

d
2
R
Q  i 
K   f    0
2

f   - Fourier component of the external ‘force’ acting on the HS QOP
THE “FINGERPRINTS” OF QOP in the FERMI-SYSTEM
Fermionic Greens function in the system with broken Matsubara time
translations is found analytically (S.I. Mukhin, T.R. Galimzyanov, 2011, in preparation)
L̂Ĝ   (   '),
   S  
p

L̂  
p
  S  

 G11 G12
Ĝ    
 G21 G22




  Matsubara  time  dependent Green's function

Timur
(outside the Department)
To find measurable predictions one has to make analytical continuation from
Matsubara to real time and derive :
 Im GR ( , p)  DOS
THE “FINGERPRINTS” OF QOP in the FERMI-SYSTEM
 F11  F12
G

0
0
F11  F12





m
m


1
1
1



 B

F11 
  Bm (a)
2  m
2
2 
2 (e  e2 )(e  e3 ) (2 1 )  m
m
i n    i
m
i n    i
m

2 1
2 1 
2



1
 
1
1


F12 

B

B
(a)
 m
 m
2
2

2 (e  e2 )(e  e3 ) (2 1 )2  m
i n    i
m m
i n    i
m

2 1
2 1 
1
Bm  

2
a 
sh 2   m 3   i
2 1
2 1 

2



1
 
1
1


G11  F11  F12 
B
(a)

B
 2m
 2 m 1
2
2

(e  e2 )(e  e3 ) (2 1 )2  m
i n    i
2m m
i n    i
(2m  1) 


2 1
2 1
2




1

1
1
  B2 m

G22  F11  F12  
  B2 m 1 (a)
2
2
(e  e2 )(e  e3 ) (2 1 )2  m
m
i n    i
2m
i n    i
(2m  1) 


2 1
2 1
2
S.I. Mukhin, T.R. Galimzyanov, 2011, in preparation
THE “FAITH”
OF FERMIONS
UNDER QOP
Im GR ( , p)  DOS
 Strongly nonlinear
HS 
 PSEUDO GAP!
Single harmonic
HS  

NO PG, but
SIDE-BANDS!
S.I. Mukhin, T.R.
Galimzyanov, 2011,
in preparation
THE “FAITH” OF FERMIONS UNDER QOP
Im GR ( , p)  DOS : at pF cut along the   axis
Strongly nonlinear HS
Single harmonic HS
S.I. Mukhin, T.R. Galimzyanov, 2011, in preparation
 
 
EFFECTIVE EUCLIDIAN ACTION OF QOP HAS INFINITE NUMBER OF DEGREES
OF FREEDOM : HAMILTONIAN DYNAMICS OF “ANGELS”
L1 ( )  L0 ( )  L1 ( )  Lsingle-PG ( )
C1 4
C1  &2
1 &&2
 2
2
Lsingle-PG ( )   ( )   ( )  C2  ( )   5 ( )    ( )   ( )

2
2
2
&  (n1)
Ln1  Ln ,...,  4 n 2 ; ,...,
6




S    Lsingle-PG ( )   Ln ( )  d  Euclidian action of the HS(QOP) field,
n1

0 
after fermions are integrated out exactly,
L is expressed via an infinite sum of
1/T
so  called 'auxiliary integrals of motion' Ln
of Lax LA  pair inverse scattering theory
for nonlinear Schrödinger equation
EFFECTIVE EUCLIDIAN ACTION OF QOP HAS INFINITE NUMBER OF DEGREES
OF FREEDOM : HAMILTONIAN DYNAMICS OF “ANGELS”
“Holographyic principle” for the HS – QOP:
HS-QOP that minimizes the lowest order Euclidian action also
1/T
minimizes the full Euclidian action, S 

0


L
(

)

L
(

)
 single-PG
 n  d ,
n 1


but with renormalized amplitude and period along the
Matsubara’s time axis.
1/T
S0 
L
single-PG
( )d ;
 S0  0  0;

 0    M  sn   Q

0
QUESTION : is it Hamiltonian dynamics, since Lagrangian contains higher
(l 1)
time-derivatives    than 1 ???
Lsingle-PG ( )   6 ( ) 
C1 4
C 
1 &&2

 ( )  C2  2 ( )   5 2 ( )  1  &2 ( )  
( )

2
2
2
EFFECTIVE EUCLIDIAN ACTION OF QOP HAS INFINITE NUMBER OF DEGREES
OF FREEDOM : HAMILTONIAN DYNAMICS OF “ANGELS”
ANSWER : YES, Euclidian action S of HS-field describes
Hamiltonian dynamics, but with an infinite number of degrees
of freedom (‘angels’) according to the rule :
m
For any finite m>1 and m-th order Lagrangian
L(m)   Ln
s 0
The following canonical coordinates and momenta are defined:
qi   (i 1) ;
 d s L(m) 
s
pi    s
1
 
(i  s) 

s  0  d 
m i
With the corresponding HS-’coordinates’ ‘Hamiltonian’ НQOP :
m
H
(m)
QOP
  pi q&i  L(m)
i 1
SUMMARY
The (first) self-consistent solution HS breaking Matsubara axis translations is
found for the Hubbard model with ‘spoiled’ nesting of the bare 2D Fermi
surface
S.I. Mukhin , J. Supercond. & Novel Magn, v. 24, 1165-71 (2011).
QUANTUM ORDER PARAMETER (QOP) – CONDENSED (DYNAMIC) HUBBARDSTRATONOVICH FIELD:
a) QOP GREEN’S FUNCTION HAS ONLY 2nd-ORDER POLES – QOP IS DIRECTLY
‘INVISIBLE’ (‘DARK MATTER’ of QUANTUM-CONDENSED BOSE-PAIRS)
a)THE “FINGERPRINTS” OF QOP IN FERMI-SYSTEM: PSEUDO-GAP, ‘LIGHT
FERMIONS’, COMMENSURATION JUMPS OF QOP MATSUBARA
TIME- PERIODICITY WHEN T-> 0, etc.
c)EFFECTIVE EUCLIDIAN ACTION OF QOP HAS INFINITE NUMBER OF
DEGREES OF FREEDOM : HAMILTONIAN DYNAMICS OF “ANGELS”
d) THE GOLDSTONE MODES of QOP ARE GAPPED and EQUAL to DISCRETE
Matsubara TIME-PERIODIC EIGENMODES of a HAMILTONIAN with WEIERSTRASS
POTENTIAL (S.I. Mukhin 2011 , in preparation )
THANK YOU
QUANTUM ORDERED STATE as BROKEN “TIME”-INVARIANCE STATE
OF MANY-BODY SYSTEM
Appendix
(“time” is Matsubara’s imaginary time)
Partition function in broken “time”-invariance state ( i.e. with
r
“time”-dependent Hubbard-Stratanovich field M ( , r ) ) :
- Hubbard-Stratanovich field action
Definition of Floquet index  n :

k 
Ek
T
when M( ,r)  M(r)
Self-consistency condition in broken “time”-invariance
(Quantum Ordered) state
Appendix
and in the explicit form :
The miracle of the exact self-consistent solution with Jacobi elliptic functions:
The workings of the e-h symmetry break :  t
(Horovitz, Gutfreund, Weger PRB (1975) )
Appendix

Tc E F
c  tc

W
CLACULATED EUCLIDIAN ACTION (Free energy) OF THE COP and QOP STATES
Appendix
Appendix
Appendix
Appendix
Introduction of the Hubbard-Stratonovich fields in the Hubbard
U-g Hubbard Hamiltonian
Matveenko JETP Lett. (2003)
Appendix
(anti)periodic conditions, with the temperature T defining the period =T-1
Abrikosov, Gor’kov, Dzyaloshinski (1963)
Dashen, Hasslacher, Neveu, PRD (1975)
Floquet equation :
with wave-functions of a “particle” in the HS fields M,
as Matsubara’s- time-periodic potentials:
The self-consistent solutions of the periodic Bloch equations are obtained using
wellknown solutions for the SSH solitonic lattices (TTF-TCNQ theory):
Appendix
Brazovskii, Gordyunin, Kirova JETP Lett. (1980)
Machida Fujita, PRB (1984)
Related documents