Download Lecture9

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Ben Gurion University of the Negev
www.bgu.ac.il/atomchip, www.bgu.ac.il/nanocenter
Physics 3 for Electrical Engineering
Lecturers: Daniel Rohrlich, Ron Folman
Teaching Assistants: Daniel Ariad, Barukh Dolgin
Week 9. Quantum mechanics – angular momentum operators •
ˆ2
commutation relations • eigenvalues and eigenvectors of Lˆ z , L
Sources: Merzbacher (2nd edition) Chap. 9;
Merzbacher (3rd edition) Chap. 11.
The time-independent Schrödinger equation for a particle in three
dimensions is
 2 2

Eψ(r)  
  V (r) ψ(r)
 2m

where r = (x,y,z), and  2 
2
x
2

2
y
2

2
z
2
.
A special, but important, class of potentials is the class of central
potentials, which depend only on r = (x2 + y2 + z2)1/2 , i.e.
 2 2

Eψ(r)  
  V (r ) ψ(r) .
 2m

The time-independent Schrödinger equation for a particle in three
dimensions is
 2 2

Eψ(r)  
  V (r) ψ(r)
 2m

where r = (x,y,z), and  2 
2
x
2

2
y
2

2
z
2
.
A special, but important, class of potentials is the class of central
potentials, which depend only on r = (x2 + y2 + z2)1/2 , i.e.
 2 2

Eψ(r)  
  V (r ) ψ(r) .
 2m

The time-independent Schrödinger equation for a particle in three
dimensions is
 2 2

Eψ(r)  
  V (r) ψ(r)
 2m

where r = (x,y,z), and  2 
2
x
2

2
y
2

2
z
2
.
A special, but important, class of potentials is the class of central
potentials, which depend only on r = (x2 + y2 + z2)1/2 , i.e.
 2 2

Eψ(r)  
  V (r ) ψ(r) .
 2m

If the only force acting is a central force, we know from classical
physics about an important conserved quantity:
angular momentum
.
Angular momentum L = r × p is conserved because F(r) and r
are always parallel:
dL
 dp  d


0  r  F(r )  r    
rp 
dt
 dt  dt
.
If the only force acting is a central force, we know from classical
physics about an important conserved quantity:
angular momentum
.
Angular momentum L = r × p is conserved because F(r) and r
are always parallel:
dL
 dp  ? d


0  r  F(r )  r    
rp 
dt
 dt  dt
© 2005-2009 George Coghill
.
If the only force acting is a central force, we know from classical
physics about an important conserved quantity:
angular momentum
.
Angular momentum L = r × p is conserved because F(r) and r
are always parallel:
dL
 dp  d


0  r  F(r )  r    
rp 
dt
 dt  dt
.
If the only force acting is a central force, we know from classical
physics about an important conserved quantity:
angular momentum
.
Angular momentum L = r × p is conserved because F(r) and r
are always parallel:
dL
 dp  d


0  r  F(r )  r    
rp 
dt
 dt  dt
Is there a quantum
operator for angular
momentum? Is it
conserved?
.
Angular momentum operators
In classical mechanics, angular momentum is defined as
L=r×p .
So in quantum mechanics, is angular momentum defined as
ˆ  rˆ  pˆ ?
L
Angular momentum operators
In classical mechanics, angular momentum is defined as
L=r×p .
So in quantum mechanics, is angular momentum defined as
ˆ  rˆ  pˆ ?
L
(Isn’t there a problem with the ordering of r̂ and p̂?)
?
© 2005-2009 George Coghill
Angular momentum operators
In classical mechanics, angular momentum is defined as
L=r×p .
So in quantum mechanics, is angular momentum defined as
ˆ  rˆ  pˆ ?
L
Angular momentum operators
In classical mechanics, angular momentum is defined as
L=r×p .
So in quantum mechanics, angular momentum is defined as
 
 
ˆ
 ,
Lx  yˆ pˆ z  zˆ pˆ y  i y
z
y 
 z
 
 
ˆ
L y  zˆ pˆ x  xˆ pˆ z  i z
x
 ,
z 
 x
 
 
ˆ

Lz  xˆ pˆ y  yˆ pˆ x  i x
y
x 
 y
.
Angular momentum operators
In classical mechanics, angular momentum is defined as
L=r×p .
So in quantum mechanics, angular momentum is defined as
 
 
ˆ
 ,
Lx  yˆ pˆ z  zˆ pˆ y  i y
z
y 
 z
 
 
ˆ
L y  zˆ pˆ x  xˆ pˆ z  i z
x
 ,
z 
 x
 
 
ˆ

Lz  xˆ pˆ y  yˆ pˆ x  i x
y
x 
 y
.
Is L̂ conserved?
Theorem:


ˆ , Hˆ  0,
If a Hermitian operator  commutes with Ĥ, i.e. A
then we can find eigenstates of  that are also eigenstates of Ĥ.
Proof: If Ĥ commutes with an observable Â, then for any
state ψ , Hˆ Aˆ ψ  Aˆ Hˆ ψ . So if ψ n is an eigenvector of Ĥ
with eigenvalue En, i.e. Hˆ ψ n  En ψ n , then so is Aˆ ψ n :



Hˆ Aˆ ψ n  Hˆ Aˆ ψ n  Aˆ Hˆ ψ n  Aˆ En ψ n  En Aˆ ψ n

If En is nondegenerate, then Aˆ ψ n  a ψ n for some number
a, so ψ n is an eigenstate of Â. If En is degenerate, then
eigenstates of  form a basis for the subspace of eigenvectors
of Ĥ with eigenvalue En.
.
Corollary:


ˆ , Hˆ  0,
If a Hermitian operator  commutes with Ĥ, i.e. A
then the expectation value of  in any state (t) is constant
in time, i.e.
d ˆ
A 0 .
dt
Proof: Define the state ψni such that Hˆ ψ ni  En ψ ni
and Aˆ ψ ni  ani ψ ni . Write  (t) 
and then
Aˆ 

n,i
does not depend on time.

n,i
2
cni ani
cnie iEnt /  ψ ni
So is L̂ conserved?
That is, do Ĥ and L̂ commute? Let’s see:


 


ˆ
Lx , V (r )  i  y
z
, V (r )
y
 z

 
 
 V (r )
 i  y
z
y 
 z
 
 

 iV (r ) y
z
y 
 z
So is L̂ conserved?
That is, do Ĥ and L̂ commute? Let’s see:


 


ˆ
Lx , V (r )  i  y
z
, V (r ) ψ
y
 z

 
 
 
 
 [V (r ) ψ]  iV (r ) y
ψ
 i  y
z
z
y 
y 
 z
 z
Remember: the derivatives act also on a wave function ψ.
So is L̂ conserved?
That is, do Ĥ and L̂ commute? Let’s see:


 


ˆ
Lx , V (r )  i  y
z
, V (r )
y
 z

 
 

 V (r )
  i  y
z
y 
 z
dV (r )  r
r 
 y

 i
z
dr  z
y 
y
 dV (r )   z
  i 
  y  z  V (r )  0 .
r
 dr   r
So is L̂ conserved?
That is, do Ĥ and L̂ commute? Let’s see:


 


ˆ
Lx , V (r )  i  y
z
, V (r )
y
 z

 
 

 V (r )
  i  y
z
y 
 z
dV (r )  r
r 
 y

 i
z
dr  z
y 
y
 dV (r )   z
  i 
 y  z  0 .
r
 dr   r
So is L̂ conserved?
That is, do Ĥ and L̂ commute? Let’s see:





2
2
ˆ
Lx ,   i  y
z
, 
y
 z

 
  2
   i 2
 i  y
z
y 
 z
 
 
 y

z
y 
 z
 2 


 
2
 i   y
 z
 2y    2z   
z
y
z
y 

So is L̂ conserved?
That is, do Ĥ and L̂ commute? Let’s see:





2
2
ˆ
Lx ,   i  y
z
, ψ
y
 z

 
  2

 
2[ 
ψ
   i  y
 ψ]
 i  y
z
z
y 
y 
 z
 z
 2 



2
 i  y
 z
 2y    2z   
z
y
z
y 

Remember: the derivatives act also on a wave function ψ.
So is L̂ conserved?
That is, do Ĥ and L̂ commute? Let’s see:


 

2
2
ˆ
Lx ,   i  y
z
, ψ
y
 z

 
  2ψ

  ψ]
2[ 
   i  y

 i  y
z
z
y 
y 
 z
 z
 2 



2
 i  y
 z
 2y    2z   
z
y
z
y 

Remember: the derivatives act also on a wave function ψ.
So is L̂ conserved?
That is, do Ĥ and L̂ commute? Let’s see:





2
2
ˆ
, 
z
Lx ,   i  y
y

 z
 2 
 


2
 2y    2z  
 z
 i  y

y

z

y

z



    

 i 
 0 .
 y z z y 
So is L̂ conserved?
That is, do Ĥ and L̂ commute? Let’s see:





2
2
ˆ
, 
z
Lx ,   i  y
y

 z
 2 
 


2
 2y    2z  
 z
 i  y

y

z

y

z



  
  
2
 i 2
 0 .
z y 
 y z
And what holds for L̂ x holds for L̂ y and L̂ z .
So L̂ is conserved!
What are the possible values of L̂ ?
Let’s calculate commutation relations for L̂.
Commutation relations
 Lˆ x , Lˆ y   yˆ pˆ z  zˆ pˆ y , zˆ pˆ x  xˆ pˆ z 

 
  yˆ pˆ z , zˆ pˆ x    yˆ pˆ z , xˆ pˆ z   zˆ pˆ y , zˆ pˆ x  zˆ pˆ y , xˆ pˆ z

  yˆ pˆ z , zˆ pˆ x   zˆ pˆ y , xˆ pˆ z




 yˆ  pˆ z , zˆ  pˆ x  xˆ zˆ , pˆ z  pˆ y  i xˆ pˆ y  yˆ pˆ x  iLˆ z ,

   
using Aˆ Bˆ , Cˆ  Aˆ Bˆ , Cˆ  Aˆ , Cˆ Bˆ . Similarly,
 Lˆ y , Lˆ z   iLˆ x
 Lˆ z , Lˆ x   iLˆ y
,
.
Commutation relations
 Lˆ x , Lˆ y   iLˆ z
,
 Lˆ y , Lˆ z   iLˆ x
,
 Lˆ z , Lˆ x   iLˆ y
.
We can choose a basis of eigenstates of L̂ x, or of L̂ y, or of L̂ z,
but only one of these bases at a time!
Also, from our generalized uncertainty principle,
  
1
ˆ
ˆ
A B 
2
 Aˆ , Bˆ 
,
we conclude
 ˆ
 ˆ
 ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
Lx L y 
Lz , L y Lz 
Lx , Lz Lx 
Ly
2
2
2
.
ˆ 2.
Eigenvalues and eigenvectors of Lˆ z , L
Let’s prove that Lˆ   Lˆ x  iLˆ y is a raising operator:
 Lˆ z , Lˆ    Lˆ z , Lˆ x  iLˆ y   iLˆ y  Lˆ x   Lˆ
.
Similarly, Lˆ   Lˆ x  iLˆ y is a lowering operator:
 Lˆ z , Lˆ    Lˆ z , Lˆ x  iLˆ y   iLˆ y  Lˆ x   Lˆ
Suppose Lˆ z l  Lz l . Then
Lˆ z Lˆ l  Lˆ Lˆ z l  Lˆ l
.
ˆ 2.
Eigenvalues and eigenvectors of Lˆ z , L
Let’s prove that Lˆ   Lˆ x  iLˆ y is a raising operator:
 Lˆ z , Lˆ    Lˆ z , Lˆ x  iLˆ y   iLˆ y  Lˆ x   Lˆ
.
Similarly, Lˆ   Lˆ x  iLˆ y is a lowering operator:
 Lˆ z , Lˆ    Lˆ z , Lˆ x  iLˆ y   iLˆ y  Lˆ x   Lˆ
Suppose Lˆ z l  Lz l . Then


Lˆ z Lˆ l  Lˆ Lˆ z  Lˆ l  Lz    Lˆ l
,
.
ˆ 2.
Eigenvalues and eigenvectors of Lˆ z , L
Let’s prove that Lˆ   Lˆ x  iLˆ y is a raising operator:
 Lˆ z , Lˆ    Lˆ z , Lˆ x  iLˆ y   iLˆ y  Lˆ x   Lˆ
.
Similarly, Lˆ   Lˆ x  iLˆ y is a lowering operator:
 Lˆ z , Lˆ    Lˆ z , Lˆ x  iLˆ y   iLˆ y  Lˆ x   Lˆ
.
Suppose Lˆ z l  Lz l . Then


Lˆ z Lˆ l  Lˆ Lˆ z  Lˆ l  Lz    Lˆ l
,
so Lˆ l is an eigenvector of L̂ zwith eigenvalue Lz  .
Similarly, Lˆ l is an eigenvector of L̂ zwith eigenvalue Lz  .
ˆ2.
Eigenvalues and eigenvectors of Lˆ z , L
Eigenvalues of L̂ z: ..., Lz  2, Lz  , Lz , Lz  , Lz  2,...;
   L̂ we must have
but since Lz is bounded by Lˆ z
Lˆ  mmax
2
2
 
2
2
2
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
L  L L  Lz   Lz  L L  Lz   Lˆ z
since
 0  Lˆ mmin for some mmax and mmin. Note


    
2
2
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
L L  Lx  iL y Lx  iL y   Lx   L y   Lˆ z
,
2
2
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
L L  Lx  iL y Lx  iL y  Lx  L y  Lˆ z ,


ˆ 2 , Lˆ  0 .
Note also L
z
.
ˆ2.
Eigenvalues and eigenvectors of Lˆ z , L
To make the rest of the calculations easier, we should change to
spherical coordinates:
x  r sin  cos  , y  r sin  sin  , z  r cos  .


x  y 


ˆ
.


 y  x
Now
so Lz  i

  x  y
x
y
The eigenfunctions of L̂ z are
1
2
e im with eigenvalues m so
2
2
ˆ2 m


L


m


mmax
max
max
2
2
ˆ2 m


L


m


mmin .
min
min
Therefore mmax = –mmin and, by convention, mmax = l.
ˆ2:
Eigenvalues and eigenvectors of Lˆ z , L
Summary: For a given value of l, the eigenstates of L̂ z are
 l ,  l  1 ,..., m ,..., l 1 , l , with respective eigenvalues
 l,  l  1,..., m,..., l  1, l . These 2l+1 eigenvectors
of L̂ z are also eigenvectors of L̂2 with degenerate eigenvalue
l (l  1) 2 .
Schrödinger’s equation for a central potential is
 2 2

Eψ(r)  
  V (r ) ψ(r) .
 2m

A vector identity:
ˆ2
L

2
 r     r      r 2 2  r    r   2
.
x
y
z
 x, r
 y, r
 z, it is
What is r  ? Since r
r
r
r
hence
ˆ2
L
 x  y  z  

  r
r    r 


,
r
 r x r y r z 

  
 r   r  r  r
r
r  r
2
2 2

2 2   2 
  r    r

r  r 

.
Schrödinger’s equation for a central potential is
 2 2

Eψ(r)  
  V (r ) ψ(r) .
 2m

A vector identity:
ˆ2
L

2
 r     r      r 2 2  r    r   2
x
y
z
 x, r
 y, r
 z, it is
What is r  ? Since r
r
r
r
hence
 x  y  z  

  r
r    r 


,
r
 r x r y r z 
ˆ2
L
  2 
 r    r

2
r 
r 

2 2
.
.
ˆ2
L
  2 
2

Solving
for
we obtain
 r    r

2
r 
r 

2 2
2
ˆ

1


L


2 
r2

 2  ,

2 r
r   r   
and by comparing this with the expression for  2 in spherical
coordinates,
2

1


ψ
1

ψ
1  
ψ 


2
2
 ψ


 sin 
 ,
 r
2 r
2
2
sin   
 
r   r  sin  
ˆ2
L
  2 
2

Solving
for
we obtain
 r    r

2
r 
r 

2 2
2
ˆ

1


L


2 
r2

 2  ,

2 r
r   r   
and by comparing this with the expression for  2 in spherical
coordinates,
2

1


ψ
1

ψ
1  
ψ 


2
2
 ψ


 sin 
 ,
 r
2 r
2
2
sin   
 
r   r  sin  
ˆ2
L
  2 
2

Solving
for
we obtain
 r    r

2
r 
r 

2 2
2
ˆ

1


L


2 
r2

 2  ,

2 r
r   r   
and by comparing this with the expression for  2 in spherical
coordinates we conclude
2

1

1 
 
2
2
ˆ
L   

sin 

2
2 sin  
 
 sin  
.
Now back to Schrödinger’s equation in spherical coordinates:
ˆ2 
2    2   L
Eψ(r , ,  )  
r
  ψ  V (r )ψ ;



r   2 
2mr 2  r 
2
since the eigenvalues of L̂ are l (l  1) 2, we can solve this
equation by expressing ψ(r,θ,φ) as a product of two functions:
ψ(r,θ,φ) = R(r) Ylm(θ,φ) ,
where
ˆ 2Y m  l (l  1) 2Y m ,
L
l
l
Lˆ zYlm  m Ylm .
ˆ 2 and Lˆ :
Here are the lowest eigenfunctions Ylm(θ,φ) of L
z
Here’s how they look:
Related documents