Download Anyons in the FQHE

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Anyons in the FQHE
Aut.: Jernej Mravlje
Adv.: Anton Ramsak
Fermions, bosons, and … anyons
 (1,2)   (1) (2)  (2) (1)  (2,1)   (1,2)
 (1,2)   (1) (2)  (2) (1)  (2,1)   (1,2)

fermions
bosons

2D: anyons

Crucial for understanding the
properties of the FQHE!

 (2,1)  exp (i ) (1,2)
Spin…
l , max. proj. m  l
S 
 n
m  m
m  n  m  l  n 2
Spin is quantized in half integers. But …
S   S x  iS y [Si , S j ]  i ijk Sk
2D – any spin
Spin-statistics theorem
s
Pauli (1940)]

2
2D: any spin -> any statistics?
… and statistics
 (2,1,3,4,..., N )  exp(i  ) (1,2,..., N )
 (1,2, ,..., N )  exp(i2  ) (1,2,..., N )
leads to statistics
  n
if the wave-function is single-valued
f ( )  

2D vs. 3D
3D : 2  0
2D : 2  0
Configurational space
Redundancy in notation

x  ( x1 , x2 ,..., xn )
Leinaas & Myrheim (1977)
xi  X
ex. : xi  ( x, y, z, s z )i
Configurational space of identical particles
Credundant  X N
Ccorrect  X N S N
ex.: 1D
( x1 , x2 )  ( x2 , x1 )
Anyons in 1D
2 2 2
2 2 2 2
H 
(
 )

2m x12  22
4m x 2 m z 2
x
z
Boundary conditions:
 ( x,0)  0

( x,0)  0
z

 *
j z   ( x,0)
( x,0)  ( x,0)
( x,0)  0
z
z
*

( x,0)   ( x,0)
z

 k ( x, z )  exp( ix)(cos kz  sin kz)
k
Model for anyon


B
 E  
t
 

  B  dS

 
 (  E )  dS   E  ds  E 2r   t  


q
c
lz  M z  qEr  

2
2
C 2
q
l z  

4
4
0 
h

 2
e
e
Addition of  0 is equal to a boost for  2 in angular momentum
of our model particle. Boson to fermion and vice-versa!
Arbitrary flux -> anyon.
Two particle anyonic wavefunction




( p1  qA1 ) ( p2  qA2 )
H

2m
2m


P 2 ( p  qArel )
H

4m
m



r   
A1, 2  
zˆ  2 ; r  r1  r2
2
r
 (r ,   )   (r , )
 

A  A  ; ( ) 
2
P2 p2
H

4m m
 (r , )  exp( iq) (r , )  exp( 
 (r,   )  exp( iq  2) (r,)
iq
) (r ,  )
2
anyonic!
HE and QHE

 
eE  ev  B
neE  jB
B
U
I
ne
RH  B ne
• HE: Hall (1879)
charge and density of carriers
• QHE: Von Klitzing et al. (1980)
standard for resistance
h
(Von Klitzing const. RK  2  25812.807449(86) )
e
measurement of fine structure
constant
IQHE: explanation
Landau levels
 2
1 
H
( p  eA)
2m
 B
A  ( y , x )
2
H nj  c (n  1 2) nj
J nj  j nj
(r l B ) 2
 nj (r ,  )  (r lB ) exp( ij ) L (r lB ) exp( 
)
2
j
j
n
jmax  R 2 lB2  B S  0    0
Filling factor:
  N Z  N jmax
z  x  iy
 0 j ( z )  z exp( 
j
z
2
2
)
FQHE
discovered in 1982
(Tsui et al. )
Stormer (1992)
Laughlin ground state
noninteracting
z
 0 j ( z )  z exp( 
j

2
2
)

 ( z1 , z2 )  ( z1 ) ( z2 )  ( z2 ) ( z1 ) exp( 
0
1
0
1
z1  z2
2
4
2
z1  z2
2
)  ( z1  z2 ) exp( 
filled Landau level
Z
 ( z1 , z2 ,..., z N )   ( zi  z j ) exp( 
i j
2
1
zj )

4 j
Laughlin ground state at filling:   1 m
N
 ( z1 , z2 ,..., z N )   ( zi  z j ) m exp( 
i j
Laughlin(1983)
1
2
z1 )

4 j
- a guess
- shows excellent overlap with numerical results
4
2
)
Fractional charge and fractional
statistics of Laughlin excitations
 0 : j  j  1  j   j 1
excitation of ground state m
z0 ( z1 , z2 ,..., z N )   ( zi  z0 )m
i
fractionally charged
C 2
q
l z  

4
4
anyonic!
Measurements of frac. charge and frac.
statistics

Shot noise measurements

Resonant tunneling
experiments
Saminadayar & Glattli (1997)
Quantum computation
Averin & Goldman (2001)
Conclusion




Anyons in 2D
Fractional charge of excitations of
FQHE ground-state
Fractional statistics -> anyons
Possible use for quantum computation
which is robust against decoherence
Related documents