Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Entropy bounds •Introduction •Black hole entropy •Entropy bounds •Holography What is entropy? Macroscopic state S=k·ln(N) Microscopic states |☺☺O> 1/3 Ex: (microcanonical) - k S piln(pi) =k S1/NlnN =k SlnN |☺O☺> 1/3 S=-k S piln(pi) r= S pi|F>ii<F| | O ☺☺> 1/3 S=-k 3 S=k 1/3 ln ln1/3 3 = k ln 3 S=-k Tr(rlnr) 1 3 r 0 0 0 1 3 0 0 0 1 3 Examples • Free particle: 3 N 2 2 2 3 S ( N , V , T ) Nk - N ln 2 V mkT • Black body radiation: S ( N ,V , T ) 2 k 4VT 4 15(c)3 • Debye Model (low temperatures): S ( N ,V , T ) 2Vk 3T 4 10 3c 3 N Entropy bounds What is the maximum of S? Extremum problem: S[pi]=-kSpiln pi subject to Spi=1 pi =1/N 1 N r 0 0 0 0 0 1 N 0 Smax=k ln dim H Entropy bounds 1: maximum entropy of free 100 spin 1/2 particles Example 2: fermions in a box Generalization: |n0,0,0, , nphase , nħ/L,0,0,,n 0,ħ/L, 0,,…,nL,L, L,> |y> |, ,…, >space N =available 0,0,0, L 3 k2dk L3L3 100 N Number of==modes = 2S 1 L dimH 2 dimH O k up and Spin Spin Momentum mode momentum kx=ħ/L N phase L3L3 space available SSdimH =k 100ln2 = 2 2 max max Smax L3L3 Maximal momentum Entropy bounds Why is this interesting? Black hole entropy Entropy bounds on matter Smax Available What should phase space a unified theory look in quantum like gravity p ? r Black holes A wrong derivation yielding correct results: 2GM vescape R If nothing can escape then: vescape c Black hole condition Scwartzschield radius Yielding: 2GM 2 1 R≤2Rs=2GM/c c R The event horizon Singularity formed Singularity formed t Event Horizon formed Event Horizon Schwartzshield formed radius y y x x Schwartzshield radius Black hole entropy (Bekenstein 1972) The area of a black hole always increases: Assumption A≥ S =0 bh S>0 Generalized second law SbhA ; ST=Sbh+Sm Via Hawking radiation: Sbh = 4kR2c3/4Għ ST=0 >0 Sbh =A/4 Bekenstein entropy bound (Bekenstein 1981) Adiabatic lowering Energy is red-shifted: E’=Erc2/4MG Mass of black hole increases: M M+M M+E’/c2 Sm rE Initial E’ 4kR2 c 3 entropy: Sm 4G Final entropy: S m S bh 4kR2 c 3 S bh 4G dS bh 2krE M dM c Problems with the Bekenstein bound Sm<2krE/cħ ? Sm 2khE/cħ h Susskind entropy bound (Susskind 1995) Sshell,c2R/2G-M Initial stage c2R M 2G Sm Shell R Sm,M c2R M 2G Sm+ Sshell After collapse c2R M 2G SBH Sm≤SBH=4kR2c3/4Għ=A/4 Problems with a space-like bound ? Sm≤A/4 Sm R Bousso bound (Bousso 1999) t t y x V y x Light cone Light sheet Sm≤A/4 Possible conclusions from an entropy bound Dim H A Gravity restricts the number of degrees of freedom available In general, field theory over-counts the available degrees of freedom GN L=L(F(x),Y(x))d4x A fundamental theory of nature should have the ‘correct’ number of degrees of freedom ? The Holographic principle (‘t Hooft 93, Susskind 94) N, the number of degrees of freedom involved in the description of L(B), must not exceed A(B)/4. (Bousso 1999) Proposition The light sheet of the region B The surface area of B A D dimensional quantum theory of gravity in planck units may be described by a D-1 dimensional Quantum field theory. A working example: AdS/CFT Quantum gravity in D+1 dimensional Anti de-Sitter space. (Conformal) Field theory in D dimensional flat space Current research •How does one generalize the AdS/CFT correspondence to other space-times? •What is the role of gravity in holography? •Is string theory holographic?