Download Entropy bounds

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Entropy bounds
•Introduction
•Black hole entropy
•Entropy bounds
•Holography
What is entropy?
Macroscopic state
S=k·ln(N)
Microscopic states
|☺☺O>
1/3
Ex: (microcanonical)
- k S piln(pi) =k S1/NlnN
=k SlnN
|☺O☺>
1/3
S=-k S piln(pi)
r= S pi|F>ii<F|
| O ☺☺>
1/3
S=-k 3 S=k
1/3 ln
ln1/3
3 = k ln 3
S=-k Tr(rlnr)
1

3
r 0


0

0
1
3
0

0

0

1

3
Examples
• Free particle:
3

 N  2 2  2 
3
 
S ( N , V , T )  Nk - N ln  
2
 V  mkT  


• Black body radiation:
S ( N ,V , T ) 
 2 k 4VT 4
15(c)3
• Debye Model (low temperatures):
S ( N ,V , T ) 
 2Vk 3T 4
10 3c 3 N
Entropy bounds
What is the maximum of S?
Extremum problem:
S[pi]=-kSpiln pi
subject to Spi=1
pi =1/N
1
 N
r  0

0

0 

0 

0 1
N
0
Smax=k ln dim H
Entropy bounds
1: maximum entropy of free
100 spin
1/2 particles
Example
2:
fermions
in a box
Generalization:
|n0,0,0,
, nphase
, nħ/L,0,0,,n 0,ħ/L, 0,,…,nL,L, L,>
|y>
|,
,…,
>space
N =available
0,0,0,
L
3 k2dk  L3L3
100
N
Number
of==modes
=
2S
1

L
dimH
2
dimH
O
k up and
Spin
Spin
Momentum
mode
momentum kx=ħ/L
N phase
L3L3 space

available
SSdimH
=k
100ln2
=
2
2
max
max
Smax L3L3
Maximal
momentum
Entropy bounds
Why is this interesting?
Black hole
entropy

Entropy
bounds
on matter
Smax
Available
What should
phase space
a unified theory look
in quantum
like

 gravity
p
?
r
Black holes
A wrong derivation yielding
correct results:
2GM
vescape 
R
If nothing can escape then:
vescape  c
Black
hole condition
Scwartzschield
radius
Yielding:
2GM
2
1
R≤2Rs=2GM/c
c R
The event horizon
Singularity
formed
Singularity
formed
t
Event Horizon
formed
Event Horizon
Schwartzshield
formed
radius
y
y
x
x
Schwartzshield
radius
Black hole entropy
(Bekenstein 1972)
The
area of a black hole always increases:
Assumption
A≥
S =0
bh
S>0
Generalized second law
 SbhA ; ST=Sbh+Sm
Via Hawking radiation:
Sbh = 4kR2c3/4Għ
ST=0
>0
Sbh
=A/4
Bekenstein entropy bound
(Bekenstein 1981)
Adiabatic lowering
Energy is red-shifted: E’=Erc2/4MG
Mass of black hole increases:
M M+M M+E’/c2
Sm
rE
Initial
E’
4kR2 c 3
entropy:
 Sm
4G
Final entropy:
S m  S bh
4kR2 c 3
 S bh
4G
dS bh
2krE

M 
dM
c
Problems with the Bekenstein bound
Sm<2krE/cħ
?
Sm 2khE/cħ
h
Susskind entropy bound
(Susskind 1995)
Sshell,c2R/2G-M
Initial stage
c2R
M
2G
Sm
Shell
R
Sm,M
c2R
M 
2G
Sm+ Sshell
After collapse
c2R
M 
2G
SBH
Sm≤SBH=4kR2c3/4Għ=A/4
Problems with a space-like bound
?
Sm≤A/4
Sm
R
Bousso bound
(Bousso 1999)
t
t
y
x
V
y
x
Light cone
Light sheet
Sm≤A/4
Possible conclusions from an
entropy bound
Dim H  A
Gravity restricts the number of
degrees of freedom available
In general, field theory over-counts
the available degrees of freedom
GN
L=L(F(x),Y(x))d4x
A fundamental theory of nature should
have the ‘correct’ number of degrees of freedom
?
The Holographic principle
(‘t Hooft 93, Susskind 94)
N, the number of degrees of freedom
involved in the description of L(B), must
not exceed A(B)/4. (Bousso 1999)
Proposition
The light sheet
of the region B
The surface area
of B
A D dimensional
quantum
theory of gravity
in planck units
may be described by a D-1 dimensional
Quantum field theory.
A working example: AdS/CFT
Quantum gravity in
D+1 dimensional
Anti de-Sitter space.
(Conformal) Field theory in
D dimensional
flat space
Current research
•How does one generalize the AdS/CFT
correspondence to other space-times?
•What is the role of gravity in holography?
•Is string theory holographic?
Related documents