Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
3D Schrodinger Equation • Simply substitute momentum operator • do particle in box and H atom • added dimensions give more quantum numbers. Can have degeneracies (more than 1 state with same energy). Added complexity. 2 p i or x 2 2 2 2m 2 ( x, y , z , t ) V ( x, y , z , t ) i t • Solve by separating variables ( x, y, z , t ) ( x, y, z ) (t ) 2 2m 2 V ( x, y, z ) E P460 - 3D S.E. 1 • If V well-behaved can separate further: V(r) or Vx(x)+Vy(y)+Vz(z). Looking at second one: 2 2m 2 (Vx ( x ) V y ( y ) Vz ( z )) E assume ( x , y , z ) 2 2m 2 2m ( x 2 2 2 y 2 x ( x ) ) (Vx V y ) y ( y ) z ( z ) 2 2m x y z ( x y ) x y (Vx V y ) x y 2 2 2 z 2 2 2 • LHS depends on x,y 2 2m ( E Vz ) x y z 2 z E Vz z z 2 RHS depends on z 2 d 2 z ( E Vz ) S z dz 2 2m 2 2 2 1 ( ) x y Vx V y S x y x 2 y 2 2m • S = separation constant. Repeat for x and y P460 - 3D S.E. 2 2 2 d x 2 m x dx 2 Vx S ' E x 2 2 d y 2 m y dy 2 Vy S S ' E y 2 2 d z 2 m z dz 2 Vz E S E z E x E y E z S ' ( S S ' ) ( E S ) E • Example: 2D (~same as 3D) particle in a Square Box V x 0, x a , y 0, y a V 0 inside box satisfies V Vx ( x ) V y ( y ) ( x, y ) x ( x ) y ( y ) • solve 2 differential equations and get E Ex E y 2 2 2 ma 2 ( n x2 n y2 ) • symmetry as square. “broken” if rectangle P460 - 3D S.E. 3 E Ex E y ( x, y ) A sin 2 2 2 ma 2 ( nx2 n y2 ) n x x a | |2 dxdy 1 sin n y y a nx , n y 1,2.. normalizat ion • 2D gives 2 quantum numbers. Level nx ny 1-1 1 1 1-2 1 2 2-1 2 1 2-2 2 2 P460 - 3D S.E. Energy 2E0 5E0 5E0 8E0 4 • for degenerate levels, wave functions can mix (unless “something” breaks degeneracy: external or internal B/E field, deformation….) y 12 A sin ax sin 2 a 21 A sin 2ax sin ay mix 12 21 2 2 1 • this still satisfies S.E. with E=5E0 P460 - 3D S.E. 5 Spherical Coordinates • Can solve S.E. if V(r) function only of radial coordinate 2 2M 2 V ( r ) E ( r , , ) 2 2M [ r 2r ( r 2 r 2 r2 1 sin 1 sin2 r (sin 2 2 ) ) ] ( r , , ) V ( r ) E • volume element is d (v ol) dr ( rd )( r sin P460 - 3D S.E. d ) 6 Spherical Coordinates • solve by separation of variables ( r , , ) R ( r ) ( ) ( ) ( E V ) R 2 M 2 ( r 2r r2 r 2 r 1 sin2 r 2 2 2 1 sin2 sin ) R R • multiply each side by r 2 sin2 R P460 - 3D S.E. 7 Spherical Coordinates-Phi • Look at phi equation first. Have separation constant 1 d2 d 2 ( ) f (r , ) ml2 • constant (knowing answer allows form) • must be single valued ( ) e iml ( 2 ) ( ) e iml ( 2 ) e iml ml 0,1,2....... • the theta equation will add a constraint on the m quantum number P460 - 3D S.E. 8 Spherical Coordinates-Theta • Take phi equation, plug into (theta,r) and rearrange. Have second separation constant 1 R d dr ml2 ( sin2 r 2 dR dr ) 1 sin 2 M 2r 2 2 d d [ E V ( r )] ( sindd ) l ( l 1) • knowing answer gives form of constant. Gives theta equation which depends on 2 quantum numbers. d 1 sin d ( sin d d ) ml2 sin 2 P460 - 3D S.E. l (l 1) 9 Spherical Coordinates-Theta d 1 sin d ( sin d d ) ml2 sin2 l (l 1) • Associated Legendre equation. Can use either analytical (calculus) or algebraic (group theory) to solve. Do analytical. Start with Legendre equation (1 z ) 2 d 2 Pl dz 2 z cos 2z dPl dz l (l 1) Pl 0 Pl Legendre function P460 - 3D S.E. 10 Spherical Coordinates-Theta • Get associated Legendre functions by taking the derivative of the Legendre function. Prove by substitution into Legendre equation lml (1 z 2 ) |ml |/ 2 d |ml | Pl dz|ml | 20 P2 21 (1 z 2 ) 22 (1 z 2 ) 1 2 2 1 dPl dz d 2 Pl dz 2 • Note that power of P determines how many derivatives one can do. • Solve Legendre equation by series solution (1 z Pl d 2P dz 2 2 ) d 2 2z Pl dz 2 dPl dz a k 0 k z a k 2 k k dP dz l (l 1) Pl 0 a k 1 k k z k 1 k ( k 1) z k 2 P460 - 3D S.E. 11 Solving Legendre Equation • Plug series terms into Legendre equation k 2 k { k ( k 1 ) a z [ k ( k 1 ) l ( l 1 )] a z } 0 k k • let k=j+2 in first part and k=j in second (think of it as having two independent sums). Combine all terms with same power {( j 2)( j 1)a j 2 [ j ( j 1) l (l 1)]a j }z • gives recursion relationship a j 2 j ( j 1) l ( l 1) ( j 2 )( j 1) j aj • series ends if a value equals 0 L=j=integer a j 2 0 j ( j 1) l (l 1) • end up with odd/even (Parity) series a1 0, aeven 0 or a0 0, aodd 0 P460 - 3D S.E. 0 12 Solving Legendre Equation • Can start making Legendre polynomials. Be in ascending power order l 0, a0 1, a1 0 P0 1 l 1, a0 0, a1 1 P1 z l 2, a0 1, a1 0, a2 06 21 j ( j 1) l ( l 1) ( j 2 )( j 1) 3 P2 1 3 z 2 • can now form associated Legendre polynomials. Can only have l derivatives of each Legendre polynomial. Gives constraint on m (theta solution constrains phi solution) lml (1 z ) 2 |ml |/ 2 d |ml | dz|ml | Pl | ml | l P460 - 3D S.E. 13 Spherical Harmonics 00 1 z cos 10 z 1, 1 (1 z 2 ) 1 2 20 1 3 z 2 2 , 1 (1 z 2 ) 1 2 z 2 , 2 (1 z 2 ) • The product of the theta and phi terms are called Spherical Harmonics. Also occur in E&M. See Table on page 127 in book • They hold whenever V is function of only r. Saw related to angular momentum Ylm lm m spherical harmonics P460 - 3D S.E. 14 3D Schr. Eqn.-Radial Eqn. • For V function of radius only. Look at radial equation. L comes in from theta equation (separation constant) 1 d r 2 dR 2 V ( r ) E ) R 2 r dr dr l ( l 1) R r2 • can be rewritten as (usually much, much better...) 2 d 2u 2 l (l 1) (V )u Eu 2 2 2 dr 2 r u ( r ) rR ( r ) • and then have probability P( r ) 4R 2 r 2 dr 4u 2 dr P460 - 3D S.E. 15 3D Schr. Eqn.-Radial Eqn. 2 d 2u 2 l (l 1) (V )u Eu 2 2 2 dr 2 r u ( r ) rR ( r ) • note L(L+1) term. Angular momentum. Acts like repulsive potential and goes to infinity at r=0 (ala classical mechanics) • energy eigenvalues typically depend on 2 quantum numbers (n and L). Only 1/r potentials depend only on n (and true for hydrogen atom only in first order. After adding perturbations due to spin and relativity, depends on n and j=L+s. P460 - 3D S.E. 16 Particle in spherical box u ( r ) rR ( r ) • Good first model for nuclei V (r) 0 V (r) r a r a • plug into radial equation. Can guess solutions 2 d 2u 2 l ( l 1) (V )u Eu 2 dr 2 2 r2 2 d 2u 2 l ( l 1) u El u 2 2 2 dr 2 r • look first at l=0 d 2u dr 2 k 2u with k 2 ME u A sin( kr) B cos( kr) P460 - 3D S.E. 17 Particle in spherical box • l=0 d 2u dr 2 k 2u with k 2 ME u A sin( kr) B cos( kr) • boundary conditions. R=u/r and must be finite at r=0. Gives B=0. For continuity, must have R=u=0 at r=a. gives sin(ka)=0 and Enlm En 00 n 00 1 2a n 2 2 2 2 Ma 2 n 1,2.... sin(nr / a ) r • note “plane” wave solution. Supplement 8-B discusses scattering, phase shifts. General terms are ik r R( r ) P460 - 3D S.E. e r 18 Particle in spherical box • ForLl>0 solutions are Bessel functions. Often arises in scattering off spherically symmetric potentials (like nuclei…..). Can guess shape (also can guess finite well) • energy will depend on both quantum numbers Enl E10 E11 E12 E20 E21 E22 ..... • and so 1s 1p 1d 2s 2p 2d 3s 3d …………….and ordering (except higher E for higher n,l) depending on details • gives what nuclei (what Z or N) have filled (sub)shells being different than what atoms have filled electronic shells. In atoms: Z 2 1S • in nuclei (with j subshells) Z 2 6 8 14 2 ( He C O Si S ) 16 1s 1 p 3 1 p 1 1d 5 2 4 10 ( He Be Ne) 2S 2 P 2 2s 1 2 P460 - 3D S.E. 19 H Atom Radial Function • For V =a/r get (use reduced mass) 1 d r 2dR 2m Ze2 l (l 1) E R R 2 2 r dr dr 40 r r • Laguerre equation. Solutions are Laguerre polynomials. Solve using series solution (after pulling out an exponential factor), get recursion relation, get eigenvalues by having the series end……n is any integer > 0 and L<n. Energy doesn’t depend on L quantum number. En MZ 2 e 4 ( 4 0 ) 2 2 2 n 2 me c 2 2 Z 2 2n2 13.6 eVZ 2 n2 • Where fine structure constant alpha = 1/137 used. Same as Bohr model energy P460 - 3D S.E. 20 H Atom Radial Function • Energy doesn’t depend on L quantum number but range of L restricted by n quantum number. l<n n=1 only l=0 1S n=2 l=0,1 2S 2P n=3 l=0,1,2 3S 3P 3D 2 2 2 2 En me c Z 2n2 13.6 eVZ n2 • eigenfunctions depend on both n,L quantum numbers. First few: R10 e Zr / a0 R20 ( 2 R21 Zr a0 Zr a0 a0 4 0 2 me e 2 C 0.5 A )e Zr / 2 a0 e Zr / 2 a0 P460 - 3D S.E. 21 H Atom Wave Functions P460 - 3D S.E. 22 H Atom Degeneracy • As energy only depends on n, more than one state with same energy for n>1 (only first order) n l m D • ignore spin for now Energy -13.6 eV 1 0(S) 0 1 -3.4 eV 2 0 0 1 1 Ground State 4 First excited states 9 second excited states -1.5 eV 1(P) -1,0,1 3 0 0 1 3 1 D n2 2(D) P460 - 3D S.E. -1,0,1 3 -2,-1,0,1,2 5 23 Probability Density | |2 probabilit y 2 | | dVolume 1 normalizat ion 2 0 0 0 1 2 1 0 or 0 2 2 | | r sin d d dr 2 2 | | r d d cos dr P ( r ) r 2 | Rnl |2 • P is radial probability density • small r naturally suppressed by phase space (no volume) • can get average, most probable radius, and width (in r) from P(r). (Supplement 8-A) dP most probable dr 0 average r r width r P460 - 3D S.E. r2 r 2 24 Most probable radius • For 1S state P ( r ) Ar 2 | R |2 Ar 2 e 2 r / a0 dP dr 0 2 re 2 r / a0 r a0 2r2 a0 e 2 r / a0 (" peak " ) r rP ( r )dr 3 2 a0 0 ( n 2 a0 Z r2 r [1 r 2 1 2 (1 l ( l 1) n2 )] in general ) Ar 2 e 2 r / a0 dr 3a02 3a02 9 4 a02 0.87a0 • Bohr radius (scaled for different levels) is a good approximation of the average or most probable value---depends on n and L • but electron probability “spread out” with width about the same size P460 - 3D S.E. 25 Radial Probability Density P460 - 3D S.E. 26 Radial Probability Density note # nodes P460 - 3D S.E. 27 Angular Probabilities P( , ) | ( ) |2 | ( ) |2 sin( ) m eim | |2 1 • no phi dependence. If (arbitrarily) have phi be angle around z-axis, this means no x,y dependence to wave function. We’ll see in angular momentum quantization 00 "1" S states 10 A cos 11 A 2 sin P states 2 2 10 12, 1 11 "1" • L=0 states are spherically symmetric. For L>0, individual states are “squished” but in arbitrary direction (unless broken by an external field) • Add up probabilities for all m subshells for a given L get a spherically symmetric probability distribution P460 - 3D S.E. 28 Orthogonality nlm nl m nn ' ll ' mm' 2 * 2 r sin dr d d nlm n ' l ' m ' 0 0 0 with Rn lm m • each individual eigenfunction is also orthogonal. • Many relationships between spherical harmonics. Important in, e.g., matrix element calculations. Or use raising and lowering operators • example E cons tan t in zˆ V | E | r cos note cos is Legendre polynomial 10 nlm | r cos | n' l ' m' mm' l ( l ' 1) f ( r ) 0 m m' P460 - 3D S.E. l l '1 29 Wave functions • build up wavefunctions from eigenfunctions. • example ( r, , , t ) 1 ( 100e iE1t / 2 211e iE2t / 211e iE2t / ) 6 • what are the expectation values for the energy and the total and zcomponents of the angular momentum? E H | * H dvol * i dvol t • have wavefunction in eigenfunction components E L2 Lz 1 1 5 9 ( E1 4 E2 E2 ) ( E1 E1 ) E1 6 6 4 24 1 ( l0 (l0 1) 4 l1 ( l1 1) l1 ( l1 1)) 6 1 10 ( 0( 0 1) 4 1(1 1) 1(1 1)) 6 6 1 1 3 ( Lz 0 4 Lz1 Lz 1 ) ( 0 4 1) 6 6 6 P460 - 3D S.E. 30