Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
IKI10230 Pengantar Organisasi Komputer Kuliah no. 04: Assembly Language Sumber: 1. Paul Carter, PC Assembly Language 2. Hamacher. Computer Organization, ed-5 3. Materi kuliah CS61C/2000 & CS152/1997, UCB 4. Intel Architecture Software Developer’s Manual 3 Maret 2004 L. Yohanes Stefanus ([email protected]) Bobby Nazief ([email protected]) bahan kuliah: http://www.cs.ui.ac.id/kuliah/POK/ 1 Revisi Jadwal Kuliah TGL NO 11-Feb 1 Pendahuluan, Organisasi Komputer 1 18-Feb 2 Stored Program Computers 2.1, 2.2, 2.3, 2.4 25-Feb 3 Tools, Sistem Bilangan, Operasi +, - 1.1 03-Mar 4 Assembly Language 1.3 10-Mar 4,5 Assembly Language, Data Transfer Operations 17-Mar 6,7 Arithmetic & Logical Operations 2.1,3.1, 3.2 24-Mar 8,9,10 Control Structures, Array/String & FP Operations 2.2,5,6 31-Mar 11,12 The CALL and RET Instructions, Multi-module 4.3, 4.4,4.6 07-Apr 13 Interfacing Assembly with HLL, Review 4.7 14-Apr TOPIK PC Hm 6.1 UTS Compile-Assembly-Link-Load 21-Apr 14 28-Apr 15,16 Micro Architecture & Control Unit 7.1-7.5 05-Mei 17,18 Memori, Virtual Memory 5.1, 5.4, 5.5, 5.7 12-Mei 19,20 I/O: Polling & Interrupt, Exceptions 4.1, 4.2 19-Mei 21 Operasi Aritmatika: Mul & Div 6.3,6.6,6.7 26-Mei 1.4 Review 2 REVIEW 3 Review: Pengelompokkan Bit ° Bit String: • • • • 4 bit 8 bit 16 bit 32 bit • 64 bit INTEL nibble byte word double-word quad-word ° Alamat lokasi memori • umumnya dinyatakan dengan bilangan heksa desimal • contoh: - - lokasi memori 90 pada memori dengan ruang memori sebesar 64K (65536 = 216) dinyatakan dengan alamat: 0x005A jika ruang memori sebesar 232 (4G) 0x0000005A 4 Review: Penyimpanan data multi-byte (Little Endian) Alamat (32 bit) int i = 90; 90 = 0x5A = i 0000 0000 0000 0000 0000 0000 0101 1010 j int j = 987700; 00000000 00000001 00000002 00000003 00000004 00000005 00000006 00000007 0101 1010 0000 0000 0000 0000 0000 0000 0011 0100 0001 0010 0000 1111 0000 0000 987700 = 0x000F1234 = 0000 0000 0000 1111 0001 0010 0011 0100 FFFFFFFF 5 Review: Two’s Complement Numbers 0000 ... 0000 0000 0000 0000two = 0000 ... 0000 0000 0000 0001two = 0000 ... 0000 0000 0000 0010two = ... 0111 ... 1111 1111 1111 1101two = 0111 ... 1111 1111 1111 1110two = 0111 ... 1111 1111 1111 1111two = 1000 ... 0000 0000 0000 0000two = 1000 ... 0000 0000 0000 0001two = 1000 ... 0000 0000 0000 0010two = ... 1111 ... 1111 1111 1111 1101two = 1111 ... 1111 1111 1111 1110two = 1111 ... 1111 1111 1111 1111two = 0ten 1ten 2ten 2,147,483,645ten 2,147,483,646ten 2,147,483,647ten –2,147,483,648ten –2,147,483,647ten –2,147,483,646ten –3ten –2ten –1ten °One zero, 1st bit is called sign bit • but one negative with no positive –2,147,483,648ten 6 Review: Sign extension ° Convert 2’s complement number using n bits to more than n bits ° Simply replicate the most significant bit (sign bit) of smaller to fill new bits •2’s comp. positive number has infinite 0s •2’s comp. negative number has infinite 1s •Bit representation hides leading bits; sign extension restores some of them •16-bit -4ten to 32-bit: 1111 1111 1111 1100two 1111 1111 1111 1111 1111 1111 1111 1100two 7 ARSITEKTUR INTEL X86: DARI PANDANGAN PEMROGRAM 8 Register: most frequently accessed operand Registers are in the datapath of the processor; if operands are in memory, we must transfer them to the processor to operate on them, And then transfer back to memory when done Computer Processor Memory Devices Input Control Store Datapath Registers Load Output 9 Sumber Daya Komputasi: Register & Memori (64G) 10 Sumber Daya Komputasi: Set Instruksi Data Transfers memory-to-memory move register-to-register move memory-to-register move Arithmetic & Logic integer (binary + decimal) or FP Add, Subtract, Multiply, Divide shift left/right, rotate left/right not, and, or, set, clear Program Sequencing & Control unconditional, conditional Branch call, return trap, return Input/Output Transfers register-to-i/o device move Synchronization String Graphics (MMX) test & set (atomic r-m-w) search, translate parallel subword ops (4 16bit add) 11 ORGANISASI MEMORI 12 Flat Memory Model ° With the flat memory model, memory appears to a program as a single, continuous address space, called a linear address space. ° The linear address space is byte addressable, with addresses running contiguously from 0 to 236 - 1. ° An address for any byte in the linear address space is called a linear address. 13 Segmented Memory Model ° With the segmented memory model, memory appears to a program as a group of independent address spaces called segments. When using this model, code, data, and stacks are typically contained in separate segments. ° To address a byte in a segment, a program must issue a logical address, which consists of a segment selector and an offset. The segment selector identifies the segment to be accessed and the offset identifies a byte in the address space of the segment. ° The programs running on an IA processor can address up to 16,383 segments of different sizes and types, and each segment can be as large as 236 bytes. 14 Real-Address Mode Memory Model ° The real-address mode model uses the memory model for the Intel 8086 processor, the first IA processor (for backward compatibility). ° The real-address mode uses a specific implementation of segmented memory in which the linear address space for the program and the operating system/executive consists of an array of segments of up to 64 Kbytes in size each. ° The maximum size of the linear address space in real-address mode is 220 bytes. 15 REGISTERS 16 x86 Registers Program Counter (PC) 17 General Purpose Registers ° GP Registers have additional, specific functions: • • • • • EAX EBX ECX EDX ESI • EDI • ESP • EBP Accumulator for operands and results data. Pointer to data in the DS segment. Counter for string and loop operations. I/O pointer. Pointer to data in the segment pointed to by the DS register; source pointer for string operations. Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for string operations. Stack pointer (in the SS segment). Pointer to data on the stack (in the SS segment). 18 Status Register: EFLAGS 19 Status Flags ° SF (bit 7) Sign flag • Set equal to the most-significant bit of the result, which is the sign bit of a signed integer. (0 indicates a positive value and 1 indicates a negative value.) ° ZF (bit 6) Zero flag • Set if the result is zero; cleared otherwise. ° CF (bit 0) Carry flag • Set if an arithmetic operation generates a carry or a borrow out of the most-significant bit of the result; cleared otherwise. ° OF (bit 11) Overflow flag • Set if the integer result is too large a positive number or too small a negative number (excluding the sign-bit) to fit in the destination operand; cleared otherwise. ° PF (bit 2) Parity flag • Set if the least-significant byte of the result contains an even number of 1 bits; cleared otherwise. ° AF (bit 4) Adjust flag • Set if an arithmetic operation generates a carry or a borrow out of bit 3 of the result; cleared otherwise. Used in BCD arithmetic. 20 System Flags ° IF (bit 9) Interrupt enable flag • Controls the response of the processor to maskable interrupt requests. Set to respond to maskable interrupts; cleared to inhibit maskable interrupts. ° IOPL (bits 12, 13) I/O privilege level field • Indicates the I/O privilege level of the currently running program or task. The current privilege level (CPL) of the currently running program or task must be less than or equal to the I/O privilege level to access the I/O address space. This field can only be modified by the POPF and IRET instructions when operating at a CPL of 0. ° NT (bit 14) Nested task flag • Controls the chaining of interrupted and called tasks. Set when the current task is linked to the previously executed task; cleared when the current task is not linked to another task. ° VM (bit 17) Virtual-8086 mode flag • Set to enable virtual-8086 mode; clear to return to protected mode. 21 Segment Registers ° Used to hold 16-bit segment selectors • CS code segment - where the instructions being executed are stored. • DS data segment • ES,FS,GS extra (data) segment with possible configuration: - one for the data structures of the current module, - another for the data exported from a higher-level module, - a third for a dynamically created data structure, • SS a fourth for data shared with another program. stack segment 22 Use of Segment Registers in Flat Memory Model ° The segment registers are loaded with segment selectors that point to overlapping segments, each of which begins at address 0 of the linear address space. ° Typically, two overlapping segments are defined: one for code (pointed to by CS) and another for data and stacks. 23 Use of Segment Registers in Segmented Memory Model ° Each segment register is ordinarily loaded with a different segment selector so that each segment register points to a different segment (up to 6 segments) within the linear address space. 24 Data Storage 25 Storage of Fundamental Data Type 26 Storage of Numeric Data Type 27 PROCESSOR OPERATION MODE 28 3 Modes of Operation ° Protected mode • the native state of the processor • all instructions and architectural features are available, providing the highest performance and capability • recommended mode for all new applications and operating systems • the processor can use any of the memory models • ability to directly execute “real-address mode” 8086 software in a protected, multitasking environment: virtual-8086 mode ° Real-address mode • provides the programming environment of the Intel 8086 processor with a few extensions • the processor is placed in real-address mode following power-up or a reset • only supports the real-address mode memory model ° System management mode • provides an operating system with a transparent mechanism for implementing platform-specific functions such as power management and system security • the processor enters SMM when the external SMM interrupt pin (SMI#) is activated or an SMI is received from the advanced programmable interrupt controller (APIC) • in SMM, the processor switches to a separate address space while saving the entire context of the currently running program or task 29 Protected Mode ° a (segment) selector value is an index into a descriptor table. ° the segments are not at fixed positions in physical memory. In fact, they do not have to be in memory at all! ° Protected mode uses a technique called virtual memory. The basic idea of a virtual memory system is to only keep the data and code in memory that programs are currently using. ° 16-bit: • offsets are still 16-bit quantities. As a consequence of this, segment sizes are still limited to at most 64K. ° 32-bit: • offsets are expanded to be 32-bits. This allows an oset to range up to 4 billion. Thus, segments can have sizes up to 4 gigabytes. • segments can be divided into smaller 4K-sized units called pages. ° In Windows 3.x: • standard mode referred to 286 16-bit protected mode • enhanced mode referred to 32-bit mode. ° Windows 9X, Windows NT/2000/XP, OS/2 and Linux all run in paged 32-bit protected mode. 30 Real Mode ° In real mode, memory is limited to only 1M (220) bytes. Valid address range from 0x00000 to 0xFFFFF. ° 20-bit address is constructed using 2 16-bit values: • The first 16-bit value is called the selector, stored in segment register. • The second 16-bit value is called the offset. • The physical address referenced by a 32-bit selector:offset pair is computed by the formula: 16*selector + offset - multiplying by 16 in hex is easy, just add a 0 to the right of the number - for example, the physical addresses referenced by 047C:0048 is given by: 047C0 + 0048 = 04808 31 Contoh program dalam real-mode ° hello_m.asm: 1. segment .text 2. ..start: 3. mov ax,DATA 4. mov ds,ax 5. mov dx,hello 6. mov ah,9 7. int 0x21 8. .... 9. segment DATA 10. hello: db 'hello, world', 13, 10, '$‘ ° debug hello_m.exe: AX=0B3D BX=FFFF CX=FE5A DX=0000 SP=010A BP=0000 SI=0000 DI=0000 DS=0B3C ES=0B2B SS=0B3D CS=0B3B IP=000D NV UP EI PL NZ NA PO NC 0B3B:000D BA0B00 MOV DX,000B -d ds:b 0B3C:0000 68 65 6C 6C 6F hello 0B3C:0010 2C 20 77 6F 72 6C 64 0D-0A 24 00 00 00 00 00 00 , world..$...... 32 Intel x86 Assembly Program 33 NASM Assembly-Program Format [label:] ° data transfer arithmetic & logic program sequencing & control i/o ... operands: • • • • ° represents the address of memory location storing the instruction to be used as reference for: 1. data access 2. jump-address instruction: • • • • • ° ; comment label: optional • • ° instruction operands register memory immediate implied comment • no comment 34 LABEL 35 Review: The Program is ... ° lokasi 0000 0002 instruksi 0846 1686 Add Sub 8,4,6 ; 8 [4] + [6] 6,8,6 ; [8] = 61 + 17 = 78 ; 6 [8] – [6] ; [6] = 78 – 17 = 61 can be represented by labels 36 Label ° Label: • Valid characters in labels are: - letters, numbers, _, $, #, @, ~, ., and ? • The only characters which may be used as the first character of an identifier are: - letters, . (period), _, ? - A label beginning with a single period is treated as a local label, which means that it is associated with the previous non-local label. So, for example: label1 .loop label2 .loop ; some code ; some more code jne .loop ret ; some code ; some more code jne .loop ret 37 Contoh: label dalam tugas0a.asm* 1. 2. 3. 4. 5. segment data1 data2 data3 datatmp times .data db 11h dw 2222h dd 33333333h 9 db 0ffh 6. 7. segment stacks .bss resd 1 8. segment .text 9. global _asm_main 10. _asm_main: 11. mov eax,10 ; decimal number, value = 10 12. mov edx,eax ; register-to-register transfer 13. mov esi,data1 ; esi points to data1 18. 19. 20. 21. mov al,[esi] mov bx,[esi] mov ecx,[esi] mov edi,[data3] ; indirect memory access, load 1 byte ; indirect memory access, load 1 word ; indirect memory access, load 1 double-word ; direct memory operand 38 INSTRUCTIONS 39 Review: Bahasa Mesin Bahasa Rakitan ° Bahasa Mesin kumpulan bit yang merepresentasikan Operasi & Operand ° Bahasa Rakitan representasi dari Bahasa Mesin dalam bahasa (kumpulan huruf & angka) yang lebih mudah dimengerti oleh manusia Bahasa Mesin 0846: Bahasa Rakitan Add (8),(4),(6) 8 [4] + [6] Register Transfer Notation mnemonic 40 Register Transfer Notation ° Notasi yang menggambarkan proses pertukaran data yang terjadi pada eksekusi instruksi: • arah: dari sumber ke tujuan • operasi: ‘+’, ‘-’, … ° Sumber/Tujuan Data: • Register • Memori • I/O Device ° Nilai/content dari sumber data dinyatakan dengan • [sumber-data] ° Contoh: • Pertukaran data: Move R1,LOC R1 [LOC] ; isi lokasi memori ‘Loc’ di; copy-kan ke register R1 • Operasi: Add R3,R1,R2 R3 [R1] + [R2] ; isi register R1 dijumlahkan ; dengan isi register R2, ; hasilnya disimpan di ; register R3 41 Review: Jumlah Operand Kelas Set Instruksi ° 3-address instruction Add C,A,B ; C [A] + [B] Operation atau Operation Destination,Source1,Source2 Source1,Source2,Destination ° 2-address instruction Add A,B Operation ; A [A] + [B] Destination,Source Format Instruksi Intel x86 ° 1-address instruction Load B ; acc B Add A ; acc [acc] + [A] ° 0-address instruction Push Push Add B A ; tos B ; tos A; [next] = B ; tos [tos] + [next] 42 Instruction Format ° Ukuran instruksi [n] bervariasi: 1 n 16 byte • • • • • 0, 1, 2, 3, 4 1, 2 Prefix Opcode 0,1 0,1 Mod R/M SIB 0, 1, 2, 3, 4 0, 1, 2, 3, 4 Displacement Immediate Prefix: (Lock, Repeat), Overrides: Segment, Operand Size, Address Size ModR/M: Addressing Mode SIB: Scale, Index, Base Displacement: Displacement’s Value Immediate: Immediate’s Value ° Konvensi: OPcode dst,src ; dst [dst] OP [src] ° Contoh: MOV EAX,EBX MOV EAX,[DATA] MOV EAX,0x10 REP MOV EDX,EAX MOV EAX,[EBP+4*ESI+Offset] ... ; register ; displacement ; immediate ; prefix: REP ; base+index*scale+displacement 43 OPERANDS 44 Operand Addressing ° Register • refers to the data (content) of a register mov eax,ebx EAX 89 d8 100 EBX 100 ° Immediate • refers to a fixed value that is hard-coded into the instruction itself mov eax,0x10 EAX b8 10 00 00 00 0x00000010 0x00000010 0xb8 ° Memory • refers to the data (content) of a memory location mov eax,[data] ; eax [data] (direct memory access) a1 d0 92 00 00 ; data is located at 0x000092d0 mov eax,[ebx] ; eax [[ebx]] (indirect memory access) 8b 03 ; data location = [ebx] 45 (Direct) Memory Operand DATA DD 0x0000FFFF ... MOV EAX,[DATA] ; EAX [DATA] MOV EAX,[0x000090D0] ; EAX [0x000090D0] MOV EAX,[DATA] DATA = 0x000092D0 0x0000FFFF … EAX 0x0000FFFF 46 (Indirect) Memory Operand DATA DD 0x0000FFFF ... MOV EBX,DATA ; EBX DATA=0x000092D0 MOV EAX,[EBX] ; EAX [[EBX]] MOV EBX,DATA MOV EAX,[EBX] 0x00009200 EBX 0x000092D0 0x000092D0 0x0000FFFF EAX 0x0000FFFF 47 Register Operands ° ° Source and destination operands can be any of: • 32-bit GP registers: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP • • • • • 16-bit GP registers: AX, BX, CX, DX, SI, DI, SP, BP 8-bit GP registers: AH, BH, CH, DH, AL, BL, CL, DL segment registers: CS, DS, SS, ES, FS, GS EFLAGS register system registers: GDTR (global descriptor table), IDTR (interrupt descriptor table register) Some instructions (DIV & MUL) use quadword operands contained in a pair of 32-bit registers. • EDX:EAX EDX: high-order dword, EAX: low-order dword • Contoh: mul ebx ; edx:eax [eax] * [ebx] 48 Contoh: register-operand dalam tugas0a.asm* 1. 2. 3. 4. 5. segment data1 data2 data3 datatmp times .data db 11h dw 2222h dd 33333333h 9 db 0ffh 6. 7. segment stacks .bss resd 1 8. segment .text 9. global _asm_main 10. _asm_main: 11. mov eax,10 ; decimal number, value = 10 12. mov edx,eax ; register-to-register transfer 13. mov esi,data1 ; esi points to data1 18. 19. 20. 21. mov al,[esi] mov bx,[esi] mov ecx,[esi] mov edi,[data3] ; indirect memory access, load 1 byte ; indirect memory access, load 1 word ; indirect memory access, load 1 double-word ; direct memory operand 49 Immediate Operands ° The maximum value allowed for an immediate operand varies among instructions, but can never be greater than the maximum value of an unsigned doubleword integer (232). ° Numeric • mov eax,100 • add eax,0a2h ; decimal ; hex • and eax,0xa2 • imul eax,ebx,242q • push 01010011b ; hex again ; octal ; binary ° Character • mov eax,'abcd' a b c d ° All arithmetic instructions (except DIV & IDIV instructions) allow the source operand to be an immediate value. 50 Contoh: immediate-operand dalam tugas0a.asm* 1. 2. 3. 4. 5. segment data1 data2 data3 datatmp times .data db 11h dw 2222h dd 33333333h 9 db 0ffh 6. 7. segment stacks .bss resd 1 8. segment .text 9. global _asm_main 10. _asm_main: 11. mov eax,10 ; decimal number, value = 10 12. mov edx,eax ; register-to-register transfer 13. mov esi,data1 ; esi points to data1 18. 19. 20. 21. mov al,[esi] mov bx,[esi] mov ecx,[esi] mov edi,[data3] ; indirect memory access, load 1 byte ; indirect memory access, load 1 word ; indirect memory access, load 1 double-word ; direct memory operand 51 Memory Operands (1/2) ° The Effective Address of memory operands are computed by means of a segment selector and an offset. ° The segment selector can be specified either implicitly or explicitly: • the most common method of specifying a segment selector is to load it in a segment register and then allow the processor to select the register implicitly, depending on the type of operation being performed. ° Default Segment Selection Rules: • CS: instruction fetches JMP _MAIN • SS: stack pushes & pops; references using ESP & EBP PUSH EAX • DS: data references, except when relative to stack MOV EAX,[DATA] • ES: destination of string operations 52 Memory Operands (2/2) ° Offset calculation: [Base] + [Index]*Scale factor + Displacement • • • • Displacement: Base: Index: Scale factor: value. An 8-, 16-, or 32-bit value. the value in a general-purpose register. the value in a general-purpose register. a value of 2, 4, or 8 that is multiplied by the index 4 8 53 Contoh: memory-operand dalam tugas0a.asm* 1. 2. 3. 4. 5. segment data1 data2 data3 datatmp times .data db 11h dw 2222h dd 33333333h 9 db 0ffh 6. 7. segment stacks .bss resd 1 8. segment .text 9. global _asm_main 10. _asm_main: 11. mov eax,10 ; decimal number, value = 10 12. mov edx,eax ; register-to-register transfer 13. mov esi,data1 ; esi points to data1 18. 19. 20. 21. mov al,[esi] mov bx,[esi] mov ecx,[esi] mov edi,[data3] ; indirect memory access, load 1 byte ; indirect memory access, load 1 word ; indirect memory access, load 1 double-word ; direct memory operand 54 Contoh: memory-operand [base+index*scale+disp] struct Point { int x; int y; } p[ ] = { {0,0}, {1,1} }; for (i=0; i<3; i++) { x += p[i].x; y += p[i].y; } _p dd 0, 0, 1, 1 ... mov ebx,_p mov esi,_i ... add eax,[ebx+8*esi+0] add edx,[ebx+8*esi+4] ... 55 DIRECTIVES 56 SECTION or SEGMENT ° The SECTION (SEGMENT) directive changes which section of the output file the code you write will be assembled into. ° The Unix (coff, elf, ...) object formats, and the bin object format, all support the standardised section names: • .text • .data • .bss ; code’s segment ; (initialized) data’s segment ; uninitialized data’s segment 57 EXTERN & GLOBAL ° EXTERN is similar to the C keyword extern: it is used to declare a symbol which is not defined anywhere in the module being assembled, but is assumed to be defined in some other module and needs to be referred to by this one • extern _printf • extern _sscanf,_fscanf ° GLOBAL is the other end of EXTERN: if one module declares a symbol as EXTERN and refers to it, then in order to prevent linker errors, some other module must actually define the symbol and declare it as GLOBAL. Some assemblers use the name PUBLIC for this purpose. ° The GLOBAL directive applying to a symbol must appear before the definition of the symbol. • global • _main: ; some code _main 58 Contoh: directives dalam tugas0a.asm* 1. 2. 3. 4. 5. segment data1 data2 data3 datatmp times .data db 11h dw 2222h dd 33333333h 9 db 0ffh 6. 7. segment stacks .bss resd 1 8. segment .text 9. global _asm_main 10. _asm_main: 11. mov eax,10 ; decimal number, value = 10 12. mov edx,eax ; register-to-register transfer 13. mov esi,data1 ; esi points to data1 18. 19. 20. 21. mov al,[esi] mov bx,[esi] mov ecx,[esi] mov edi,[data3] ; indirect memory access, load 1 byte ; indirect memory access, load 1 word ; indirect memory access, load 1 double-word ; direct memory operand 59 PSEUDO-INSTRUCTIONS 60 DB and friends: Declaring Initialised Data ° DB, DW, DD, DQ and DT are used to declare initialized data in the output file. db 0x55 db 0x55,0x56,0x57 db 'a',0x55 db 'hello',13,10,'$' ; just the byte 0x55 ; three bytes in succession ; character constants are OK ; so are string constants dw 0x1234 dw 'a' dw 'ab' dw 'abc' dd 0x12345678 ; 0x34 0x12 ; 0x41 0x00 (it's just a number) ; 0x41 0x42 (character constant) ; 0x41 0x42 0x43 0x00 (string) ; 0x78 0x56 0x34 0x12 dd 1.234567e20 dq 1.234567e20 dt 1.234567e20 ; floating-point constant ; double-precision float ; extended-precision float 61 RESB and friends: Declaring Uninitialised Data ° RESB, RESW, RESD, RESQ and REST are designed to be used in the BSS section of a module: they declare uninitialized storage space. Each takes a single operand, which is the number of bytes, words, doublewords or whatever to reserve. buffer: wordvar: realarray: resb 64 resw 1 resq 10 ; reserve 64 bytes ; reserve a word ; array of ten reals 62 EQU: Defining Constants ° EQU defines a symbol to a given constant value: when EQU is used, the source line must contain a label. The action of EQU is to define the given label name to the value of its (only) operand. header_len equ ... 16 mov ecx,header_len ; eax 16 63 TIMES: Repeating Instructions or Data ° The TIMES prefix causes the instruction to be assembled multiple times. zerobuf: times 64 db 0 ... times 100 movsb 64 Contoh: pseudo-instructions dalam tugas0a.asm* 1. 2. 3. 4. 5. segment data1 data2 data3 datatmp times 9 .data db 11h dw 2222h dd 33333333h db 0ffh 6. 7. segment stacks .bss resd 1 8. segment .text 9. global _asm_main 10. _asm_main: 11. mov eax,10 ; decimal number, value = 10 12. mov edx,eax ; register-to-register transfer 13. mov esi,data1 ; esi points to data1 18. 19. 20. 21. mov al,[esi] ; indirect memory access, load 1 byte mov bx,[esi] ; indirect memory access, load 1 word mov ecx,[esi] ; indirect memory access, load 1 dword mov edi,[data3]; direct memory operand 65 EXPRESSIONS 66 Special Expressions ° NASM supports two special tokens in expressions, allowing calculations to involve the current assembly position: the $ and $$ tokens. ° $ evaluates to the assembly position at the beginning of the line containing the expression; message db 'hello, world' msglen buffer: equ $-message db 'hello, world' times 64-$+buffer db ' ‘ • so you can code an infinite loop using JMP $. ° $$ evaluates to the beginning of the current section; • so you can tell how far into the section you are by using ($-$$). 67 Operators ° |: Bitwise OR Operator • bitwise OR ° ^: Bitwise XOR Operator • bitwise XOR ° &: Bitwise AND Operator • bitwise AND ° << and >>: Bit Shift Operators • << gives a bit-shift to the left, >> gives a bit-shift to the right • in NASM, such a shift is always unsigned ° + and -: Addition and Subtraction Operators • do perfectly ordinary addition and subtraction ° *, /, //, % and %%: Multiplication and Division • * is the multiplication operator • / is unsigned division and // is signed division • % and %% provide unsigned and signed modulo operators ° Unary Operators: +, -, ~ and SEG • • • • - negates its operand + does nothing (it's provided for symmetry with -) ~ computes the one's complement of its operand SEG provides the segment address of its operand 68 Contoh: expressions dalam tugas0a.asm* 1. 2. 3. 4. 5. segment data1 data2 data3 datatmp times 9 .data db (1<<4)|1 ; [data1] = 11h dw 2222h dd 33333333h db 0ffh 6. 7. segment stacks .bss resd 1 8. segment .text 9. global _asm_main 10. _asm_main: 11. mov eax,~0xEF&0xFF ; decimal number, value = 10 12. mov edx,eax ; register-to-register transfer 13. mov esi,data1 ; esi points to data1 18. 19. 20. 21. mov al,[esi] ; indirect memory access, load 1 byte mov bx,[esi] ; indirect memory access, load 1 word mov ecx,[esi] ; indirect memory access, load 1 dword mov edi,[data3]; direct memory operand 69 CONTOH PROGRAM 70 hello.asm extern _printf segment .data the_str db "hello world", 10, 0 segment .text global _asm_main _asm_main: enter 0,0 pusha push call pop dword the_str _printf eax popa mov eax,0 leave ret ; printf(“hello world\n”) ; return back to main() – driver.c 71 EVALUASI TUGAS0 72 tugas0a.asm 1. 2. 3. 4. 5. segment data1 data2 data3 data4 .data db 11h dw 2222h dd 33333333h times 16 db 0 0x0000000a 0x00000002 0x00000010 0x0000000a 14. 15. 16. 17. mov eax,10 mov ebx,10b mov ecx,10h mov edx,eax ; eax = ; ebx = ; ecx = ; edx = 24. mov esi,data1 25. 26. 27. 28. 29. 30. mov al,[esi] mov bx,[esi] mov ecx,[esi] mov edx,[data1] mov esi,[data2] mov edi,[data3] ; esi = 0x0000c8d0; [0x0000c8d0] = 0x11, 0x22, 0x22, 0x33 0x33, 0x33, 0x33, 0xff ; eax = 0x00000011 ; ebx = 0x00002211 ; ecx = 0x33222211 ; edx = 0x33222211 ; esi = 0x33332222 ; edi = 0x33333333 31. 32. 33. mov [data4],dl mov [data4],dx mov [data4],edx ; [data4] = 0x11, 0x00, 0x00, 0x00; data4=0x0000c8e0 ; [data4] = 0x11, 0x22, 0x00, 0x00 ; [data4] = 0x11, 0x22, 0x22, 0x33 73