Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ECE3055 Computer Architecture and Operating Systems Lecture 3 MIPS ISA Prof. Hsien-Hsin Sean Lee School of Electrical and Computer Engineering Georgia Institute of Technology 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We’ll be working with the MIPS instruction set architecture (some of you have done this in 2030) a representative of Reduced Instruction Set Computer (RISC) similar to other architectures developed since the 1980's used by NEC, Nintendo, Silicon Graphics, Sony Design goals: Maximize performance and Minimize cost, Reduce design time 2 MIPS arithmetic All instructions have 3 operands Operand order is fixed (destination first) Example: C code: A = B + C MIPS code: add $s0, $s1, $s2 (associated with variables by compiler) 3 MIPS arithmetic Design Principle: simplicity favors regularity. Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code: add $t0, $s1, $s2 add $s0, $t0, $s3 sub $s4, $s5, $s0 Operands must be registers, only 32 registers provided All memory accesses are accomplished via loads and stores A common feature of RISC processors 4 Registers vs. Memory Arithmetic instructions operands must be registers, — only 32 registers provided Compiler associates variables with registers What about programs with lots of variables Control Input Memory Datapath Processor Output I/O 5 Memory Organization Viewed as a large, single-dimension array, with an address. A memory address is an index into the array "Byte addressing" means that the index points to a byte of memory. 0 1 2 3 4 5 6 ... 8 bits of data 8 bits of data 8 bits of data 8 bits of data 8 bits of data 8 bits of data 8 bits of data 6 Memory Organization Bytes are nice, but most data items use larger "words“ MIPS provides lw/lh/lb and sw/sh/sb instructions For MIPS, a word is 32 bits or 4 bytes. (Intel’s word=16 bits and double word or dword=32bits) 0 32 bits of data 4 32 bits of data Registers hold 32 bits of data 8 32 bits of data 12 32 bits of data 232 bytes...with byte addresses from 0 to 232-1 230 words with byte addresses 0, 4, 8, ... 232-4 Words are aligned i.e., what are the least 2 significant bits of a word address? 7 Endianness [defined by Danny Cohen 1981] Byte ordering How a multiple byte data word stored in memory Endianness (from Gulliver’s Travels) Big Endian Most significant byte of a multi-byte word is stored at the lowest memory address e.g. Sun Sparc, PowerPC Little Endian Least significant byte of a multi-byte word is stored at the lowest memory address e.g. Intel x86 Some embedded & DSP processors would support both for interoperability 8 Example of Endian Store 0x87654321 at address 0x0000, byte-addressable 0x0000 0x87 0x0001 0x65 0x0002 0x0003 Lower Memory Address 0x0000 0x21 0x0001 0x43 0x43 0x0002 0x65 0x21 0x0003 0x87 Higher Memory Address BIG ENDIAN Lower Memory Address Higher Memory Address LITTLE ENDIAN 9 Instructions Load and store instructions Example: 4 bytes A[0] 32 bits of data A[1] C code: MIPS code: long A[100]; A[2] A[9] = h + A[8]; lw $t0, 32($s3) add $t0, $s2, $t0 sw $t0, 36($s3) 32 bits of data 32 bits of data 32 bits of data Store word has destination last Remember arithmetic operands are registers, not memory! 10 Our First Example swap(int v[], int k); { int temp; temp = v[k] v[k] = v[k+1]; v[k+1] = temp; } swap: muli add lw lw sw sw jr $2, $5, 4 $2, $4, $2 $15, 0($2) $16, 4($2) $16, 0($2) $15, 4($2) $31 MIPS Software Convention $4, $5, $6, $7 are used for passing arguments 11 So far we’ve learned: MIPS — loading words but addressing bytes — arithmetic on registers only Instruction add $s1, $s2, $s3 sub $s1, $s2, $s3 lw $s1, 100($s2) sw $s1, 100($s2) Meaning $s1 = $s2 + $s3 $s1 = $s2 – $s3 $s1 = Memory[$s2+100] Memory[$s2+100] = $s1 12 Software Conventions for MIPS Registers Register Names Usage by Software Convention $0 $zero $1 $at $2 - $3 $v0 - $v1 Function return result registers $4 - $7 $a0 - $a3 Function passing argument value registers $8 - $15 $t0 - $t7 Temporary registers, caller saved $16 - $23 $s0 - $s7 Saved registers, callee saved $24 - $25 $t8 - $t9 Temporary registers, caller saved $26 - $27 $k0 - $k1 Reserved for OS kernel $28 $gp Global pointer $29 $sp Stack pointer $30 $fp Frame pointer $31 $ra Return address (pushed by call instruction) $hi $hi High result register (remainder/div, high word/mult) $lo $lo Low result register (quotient/div, low word/mult) Hardwired to zero Reserved by assembler 13 Instruction Format Instruction Meaning add $s1,$s2,$s3 sub $s1,$s2,$s3 lw $s1,100($s2) sw $s1,100($s2) bne $s4,$s5,Label beq $s4,$s5,Label j Label $s1 = $s2 + $s3 $s1 = $s2 – $s3 $s1 = Memory[$s2+100] Memory[$s2+100] = $s1 Next instr. is at Label if $s4 $s5 Next instr. is at Label if $s4 = $s5 Next instr. is at Label Formats: R op rs rt rd I op rs rt 16 bit address J op shamt funct 26 bit address 14 Machine Language Instructions, like registers and words of data, are also 32 bits long Example: add $t0, $s1, $s2 registers have numbers, $t0=9, $s1=17, $s2=18 Instruction Format: 000000 10001 op rs 10010 rt 01000 rd 00000 100000 shamt funct Can you guess what the field names stand for? 15 MIPS Encoding: R-Type 31 26 25 opcode 21 20 rs 16 15 rt 11 10 rd 6 5 shamt 0 funct rd rt add $4, $3, $2 rs 31 26 25 21 20 16 15 11 10 6 5 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 opcode rs rt rd shamt funct 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 Encoding = 0x00622020 16 MIPS Encoding: R-Type 31 26 25 opcode 21 20 rs 16 15 11 10 rt rd 6 5 shamt 0 funct rd shamt sll $3, $5, 7 rt 31 26 25 21 20 16 15 11 10 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 opcode rs rt rd shamt funct 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 Encoding = 0x000519C0 17 Machine Language Consider the load-word and store-word instructions, What would the regularity principle have us do? New principle: Good design demands a compromise Introduce a new type of instruction format I-type for data transfer instructions other format was R-type for register Example: lw $t0, 32($s2) 35 18 9 op rs rt 32 16 bit number Where's the compromise? 18 MIPS Encoding: I-Type 31 26 25 opcode 21 20 rs 16 15 0 rt Immediate Value rt Immediate lw $5, 3000($2) rs 31 26 25 21 20 16 15 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 opcode rs rt Immediate Value 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 Encoding = 0x8C450BB8 19 MIPS Encoding: I-Type 31 26 25 opcode 21 20 rs 16 15 0 rt Immediate Value rt Immediate sw $5, 3000($2) rs 31 26 25 21 20 16 15 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 opcode rs rt Immediate Value 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 Encoding = 0xAC450BB8 20 Stored Program Concept Instructions are bits Programs are stored in memory — to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch & Execute Cycle Instructions are fetched and put into a special register Bits in the register "control" the subsequent actions Fetch the “next” instruction and continue 21 Control Decision making instructions alter the control flow, i.e., change the "next" instruction to be executed MIPS conditional branch instructions: bne $t0, $t1, Label beq $t0, $t1, Label Example: if (i==j) h = i + j; bne $s0, $s1, Label add $s3, $s0, $s1 Label: .... 22 Control MIPS unconditional branch instructions: j label Example: if (i!=j) h=i+j; else h=i-j; beq $s4, $s5, Lab1 add $s3, $s4, $s5 j Lab2 Lab1: sub $s3, $s4, $s5 Lab2: ... Can you build a simple for loop? 23 BEQ/BNE uses I-Type 31 26 25 opcode 21 20 rs 16 15 rt 0 Signed Offset Value (encoded in words, e.g. 4-bytes) rs beq $0, $9, 40 rt 31 26 25 21 20 Offset Encoded by 40/4 = 10 16 15 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 opcode rs rt Immediate Value 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 Encoding = 0x1009000A 24 MIPS Encoding: J-Type 31 26 25 0 opcode Target Address •jal will jump and push return address in $ra ($31) •Use “jr $31” to return Target jal 0x00400030 X 0000 0000 0100 0000 0000 0000 0011 0000 Target Address 31 26 25 Instruction=4 bytes 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 opcode Target Address 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 Encoding = 0x0C10000C 25 JALR and JR uses R-Type JALR (Jump And Link Register) and JR (Jump Register) Considered as R-type Unconditional jump JALR used for procedural call jalr r2 Or jalr r31, r2 jr r2 31 26 25 21 20 16 15 11 10 6 5 0 31 26 25 21 20 16 15 11 10 6 5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 rd opcode rs 0 0 funct (default=31) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 opcode rs 0 0 funct 26 Control Flow We have: beq, bne, what about Branch-if-less-than? New instruction: if $s1 < $s2 then $t0 = 1 slt $t0, $s1, $s2 else $t0 = 0 Can use this instruction to build "blt $s1, $s2, Label" — can now build general control structures For ease of assembly programmers, the assembler allows “blt” as a “pseudo-instruction” — assembler substitutes them with valid MIPS instructions — there are policy of use conventions for registers blt $4 $5 loop slt $1 $4 $5 bne $1 $0 loop 2 27 Constants Small constants are used quite frequently (50% of operands) e.g., A = A + 5; B = B + 1; C = C - 18; Solutions? Why not? put 'typical constants' in memory and load them. create hard-wired registers (like $zero) for constants like one. Use immediate values MIPS Instructions: addi $29, $29, 4 slti $8, $18, 10 andi $29, $29, 6 ori $29, $29, 4 3 28 How about larger constants? We'd like to be able to load a 32 bit constant into a register Must use two instructions, new "load upper immediate" instruction lui $t0, 1010101010101010 filled with zeros 1010101010101010 0000000000000000 Then must get the lower order bits right, i.e., ori $t0, $t0, 1010101010101010 1010101010101010 0000000000000000 0000000000000000 1010101010101010 1010101010101010 1010101010101010 ori 29 Input/Output Place proper arguments (e.g. system call code) to corresponding registers and place a ‘syscall’ Print string li la syscall $v0, 4 $a0, var Print integer li $v0, 1 add $a0, $t0, $0 syscall Read integer li $v0, 5 Syscall # result in $v0 See Appendix A for more. 30 Assembly Language vs. Machine Language Assembly provides convenient symbolic representation much easier than writing down numbers e.g., destination first Machine language is the underlying reality e.g., destination is no longer first Assembly can provide 'pseudoinstructions' e.g., “move $t0, $t1” exists only in Assembly would be implemented using “add $t0,$t1,$zero” When considering performance you should count real instructions 31 Other Issues Things we are not going to cover support for procedures linkers, loaders, memory layout stacks, frames, recursion manipulating strings and pointers interrupts and exceptions system calls and conventions Some of these we'll talk about later We've focused on architectural issues basics of MIPS assembly language and machine code we’ll build a processor to execute these instructions. 32 Summary of MIPS simple instructions all 32 bits wide very structured only three instruction formats R op rs rt rd I op rs rt 16 bit address J op shamt funct 26 bit address rely on compiler to achieve performance — what are the compiler's goals? help compiler where we can 33 Addresses in Branches and Jumps Instructions: bne $t4,$t5,Label beq $t4,$t5,Label j Label Next instruction is at Label if $t4 $t5 Next instruction is at Label if $t4 = $t5 Next instruction is at Label Formats: I op J op rs rt 16 bit address 26 bit address Addresses are not 32 bits — How do we handle this with load and store instructions? 34 Addresses in Branches Instructions: bne $t4,$t5,Label beq $t4,$t5,Label Formats: I Next instruction is at Label if $t4$t5 Next instruction is at Label if $t4=$t5 op rs rt 16 bit address Could specify a register (like lw and sw) and add it to address use Instruction Address Register (PC = program counter) most branches are local (principle of locality) Jump instructions just use high order bits of PC address boundaries of 256 MB 35 To Summarize MIPS operands Name 32 registers Example Comments $s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is $fp, $sp, $ra, $at reserved for the assembler to handle large constants. Memory[0], 2 30 Accessed only by data transfer instructions. MIPS uses byte addresses, so memory Memory[4], ..., words and spilled registers, such as those saved on procedure calls. add MIPS assembly language Example Meaning add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers $s1 = $s2 + 100 $s1 = Memory[$s2 + 100] Memory[$s2 + 100] = $s1 $s1 = Memory[$s2 + 100] Memory[$s2 + 100] = $s1 Used to add constants Category Arithmetic sequential words differ by 4. Memory holds data structures, such as arrays, Memory[4294967292] Instruction addi $s1, $s2, 100 lw $s1, 100($s2) sw $s1, 100($s2) store word lb $s1, 100($s2) load byte sb $s1, 100($s2) store byte load upper immediate lui $s1, 100 add immediate load word Data transfer Conditional branch Unconditional jump $s1 = 100 * 2 16 Comments Word from memory to register Word from register to memory Byte from memory to register Byte from register to memory Loads constant in upper 16 bits branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to PC + 4 + 100 Equal test; PC-relative branch branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to PC + 4 + 100 Not equal test; PC-relative set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1; else $s1 = 0 Compare less than; for beq, bne set less than immediate slti jump j jr jal jump register jump and link $s1, $s2, 100 if ($s2 < 100) $s1 = 1; Compare less than constant else $s1 = 0 2500 $ra 2500 Jump to target address go to 10000 For switch, procedure return go to $ra $ra = PC + 4; go to 10000 For procedure call 36 Addressing Mode 1. Immediate addressing Operand is constant op rs rt Immediate 2. Register addressing op rs rt rd ... funct Registers Operand is in register Register 3. Base addressing op rs lb $t0, 48($s0) rt Memory Address + Register Byte Halfword Word 4. PC-relative addressing bne $4, $5, Label op (label will be assembled into a distance) rs rt Memory Address PC + Word 5. Pseudodirect addressing j Label op Address PC Concatenation w/ PC[31..28] Memory Word 37 Supplementary Materials 38 Alternative Architectures Design alternative: provide more powerful operations goal is to reduce number of instructions executed danger is a slower cycle time and/or a higher CPI Sometimes referred to as “RISC vs. CISC” virtually all new instruction sets since 1982 have been RISC VAX: minimize code size, make assembly language easy instructions from 1 to 54 bytes long! We’ll look at PowerPC and 80x86 39 PowerPC Indexed addressing example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3] What do we have to do in MIPS? Update addressing update a register as part of load (for marching through arrays) example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4 What do we have to do in MIPS? Others: load multiple/store multiple a special counter register “bc Loop” decrement counter, if not 0 goto loop 40 80x86 1978: The Intel 8086 is announced (16 bit architecture) 1980: The 8087 floating point coprocessor is added 1982: The 80286 increases address space to 24 bits, +instructions 1985: The 80386 extends to 32 bits, new addressing modes 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions (mostly designed for higher performance) 1997: MMX (SIMD-INT) is added (PPMT and P-II) 1999: SSE (single prec. SIMD-FP and cacheability instructions) is added in P-III 2001: SSE2 (double prec. SIMD-FP) is added in P4 2004: Nocona introduced (compatible with AMD64 or once called x86-64) “This history illustrates the impact of the “golden handcuffs” of compatibility “adding new features as someone might add clothing to a packed bag” “an architecture that is difficult to explain and impossible to love” 41 A Dominant Architecture: 80x86 See your textbook for a more detailed description Complexity: Instructions from 1 to 17 bytes long one operand must act as both a source and destination one operand can come from memory complex addressing modes e.g., “base or scaled index with 8 or 32 bit displacement” Saving grace: the most frequently used instructions are not too difficult to build compilers avoid the portions of the architecture that are slow “what the 80x86 lacks in style is made up in quantity, making it beautiful from the right perspective” 42 Summary Instruction complexity is only one variable lower instruction count vs. higher CPI / lower clock rate Design Principles: simplicity favors regularity smaller is faster good design demands compromise make the common case fast Instruction set architecture a very important abstraction indeed! 43