Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Financial support provided through the European Community's Improving Human Potential Program under contract RTN2-2002-00217, MAGE MAGE Mid-term review (23/09/04): Scientific work in progress « Integrating the motion of satellites in a consistent relativistic framework » S. Pireaux Collaborators: • S. Pireaux, JP. Barriot, Observatoire Midi-Pyrénées • P. Rosenblatt Royal Observatory of Belgium 1. MOTIVATIONS: precise geophysics implies precise geodesy Satellite motion current description: Newton’s law + relativistic corrections + other forces Relativistic corrections Z Z on measurements Y Y X (X,Y,Z) = planetary crust frame Planetary potential model Planetary rotation model X (X,Y,Z) = quasi inertial frame Satellite motion Errors in relativistic corrections, time or space transformations… Mis-modeling in the planetary potential or the planetary rotation model better use relativistic formalism directly 2. THE CLASSICAL APPROACH: GINS Newton’s 2nd law of motion with - acceleration due to the Earth gravitational potential; - acceleration due to gravitational interaction with Moon, Sun and planets; - acceleration due to satellite colliding with residual gas molecules (hyp: free molecular flux); - acceleration due to change in satellite momentum owing to solar photon flux; - acceleration due to Earth tide potential due to the Sun and Moon, corrected for Love number frequencies, ellipticity and polar tide; - acceleration due to the ocean tide potential (single layer model); - acceleration due to gravitational relativistic effects; - acceleration induced by the redistribution of atmospheric masses (single layer model). A gradU E grad A Pertu rb atin g Bo d ies E A Atmo sp h eric Drag Earth Tides grad A RadiationPressure U U Ocean Tides A Relativistic A Atmo sp h eric Pressu re Examples: a high-, or respectively low-altitude satellite… LAGEOS Laser GEOdymics Satellite Aims: - calculate station positions (1-3cm) - monitor tectonic-plate motion - measure Earth gravitational field - measure Earth rotation Design: - spherical with laser reflectors - no onboard sensors/electronic - no attitude control Orbit: 5858x5958km, i = 52.6° Mission: 1976, ~50 years (USA) SEASAT SEA SATellite Aims: -test oceanic sensors (to measure sea surface heights ) Design: Orbit: 800km Mission: June-October 1978 Orders of magnitude [m/s²]… Cause LAGEOS 1 SEASAT Earth monopole 2.8 7.9 Earth oblateness 1.0 10**-3 9.3 10 **-3 Low order geopotential harmonics (eg. l=2,m=2) 6.0 10**-6 5.4 10**-5 High order geopotential harmonics (eg.l=18,m=18) 6.9 10**-12 3.9 10**-7 Moon 2.1 10**-6 1.3 10**-6 Sun 9.6 10**-7 5.6 10**-7 Other planets (eg. Ve) 1.3 10**-10 7.3 10**-11 Indirect oblation (Moon-Earth) 1.4 10**-11 1.4 10**-11 General relativistic corrections 9.5 10**-10 4.9 10**-9 Atmospheric drag 3 2 Solar radiation pressure 3.2 10**-9 9.2 10**-8 Earth albedo pressure 3.4 10**-10 3.0 10**-8 Thermal emission 1.9 10**-12 1.9 10**-9 10**-12 10**-7 High satellite Low satellite a) Gravitational potential model for the Earth E GM X LAGEOS 1 U lmax E l 0 l m 0 X E P (sin )C cos m S sin m l lm lm lm b) Newtonian contributions from the Moon, Sun and Planets A A A PB E J2 - Moon coupling body "n " 3rd body n with A J2 - Moon coupling 3 GM 2 X Mo 5 Mo Z 5 C 5 X and 2 20 Mo 2 E A 3rd body n LAGEOS 1 2 Mo 1 X Mo X X GM X X Mo n n X X n 3 n 0.58286072 1.02761036 0.34965593 0 2 X 0 1 10 m/s 6 XYZ0 3 n 2 c) Relativistic corrections on the forces A A R A LAGEOS 1 Schw GM c X 2 E 3 4GM V X E 2 Schwarzschild A Geodetic(De Sitter) Precession A Lens-Thirring Precession X 4 V X V 0.187604 4.524321 - 0.210319 10 m/s 8 XYZ0 2 A LAGEOS 1 GP 2 GP V , 3 GM VX 2c X E GP 2 3 0.245 2.141 0.928 10 m/s 11 XYZ0 2 A 2 LAGEOS 1 LTP LTP V , LTP G 3S X X S c X X 2 3 0.13 34.83 40.10 E E 2 10 m/s 12 XYZ0 2 d) diagram: GINS ORBIT X ,Y , Z ;V ,V ,V x Y z GRAVITATIONAL POTENTIAL MODEL FOR EARTH TAI GRIM4-S4 ITRS (non inertial) J2000 (“inertial”) INTEGRATOR A PLANET EPHEMERIS TAI DE403 J2000 (“inertial”) TAI TT TDB For x , v in E E A andA GP TDB PB E 3. THE IDEA… Classical approach: “Newton” + relativistic corrections for precise satellite dynamics and time measurements. Advantages: - Well-proven method. - Might be sufficient for current application. Drawbacks: - To be adapted to the level of precision of data and to the adopted space-time transformations Alternative and pioneering effort: develop a satellite motion integrator in a pure relativistic framework. Advantages: - To easily take into account all relativistic effects with “metric” adapted to the precision of measurements and adopted conventions. - Same geodesic equation for photons (light signals) massive particles (satellites without non-grav forces) - Relativistically consistent approach 4. GENERAL STRUCTURE OF THIS RELATIVISTIC STUDY … First developments for Earth satellites… Part. 1: RELATIVISTIC TIME TRANSFORMATIONS Part. 2: METRIC PRESCRIPTIONS en cours Part. 3: RMI: Relativistic Motion Integrator (if only gravitational forces) (SC)RMI: Semi-Classical RMI (if non-gravitational forces are present) Then transpose this approach to others planets and missions: Mars, Mercury… 5. THE RELATIVISTIC APPROACH: (SC)RMI The geodesic equation of motion for the appropriate metric, contains all needed gravitational relativistic effects. dV V V d with V dX d X (cT, X , Y , Z ) Need for symplectic integrator and first integral GV V c 0, 1, 2, 3 = proper time = Christoffel symbol associated to GCRS metric G d X W dT X 2 classical limit i 2 i with i 1, 2, 3 W = GCRS generalized gravitational potential in metric G 2 a) Method: GINS provides template orbits to validate the RMI orbits - simulations with 1) Schwarzschild metric => validate Schwarzschild correction 2) (Schwarzschild + GRIM4-S4) metric => validate harmonic contributions 3) Kerr metric => validate Lens-Thirring correction 4) GCRS metric with(out) Sun, Moon, Planets => validate geodetic precession (other bodies contributions) (…) b) RMI goes beyond GINS capabilities: - (will) includes 1) IAU 2000 standard GCRS metric 2) IAU 2000 time transformation prescriptions 3) IAU 2000/IERS 2003 new standards on Earth rotation 4) (post)-post-Newtonian parameters ( , , ...) in metric and space-time transfo - separate modules allow easy update for metric, Earth potential model (EGM96)… prescriptions - contains all relativistic effects, different couplings at corresponding metric order. c) diagram: RMI GRAVITATIONAL POTENTIAL MODEL FOR EARTH GRIM4-S4 ORBIT ;V ITRS (non inertial) TCG GCRS (“inertial”) TCG Earth rotation model X METRIC MODEL IAU2000 GCRS metric G INTEGRATOR TCG dV ;V d GCRS (“inertial”) TCG TDB PLANET EPHEMERIS DE403 for G in TDB d) Including non gravitational forces The generalized relativistic equation of motion includes non-gravitational forces V V dV K G V V d c c dX with V K quadri-”force” d measured by accelerometers d X W K dT X 2 classical limit i 2 i i The principle of accelerometers: - satellite Center of Mass at X - test-mass, shielded from non-gravitational forces, at X X difference between the two equations at first order in X : dX dX dX 1 dX dX d X dX K G X 2 c d d d X d d d d 2 2 2 G , with K d X K dT 2 classical limit i i 2 j W X X X 2 i j j evaluated at X for the CM of satellite BIBLIOGRAPHY Relativistic time transformations [Bize et al 1999] Europhysics Letters C, 45, 558 [Chovitz 1988] Bulletin Géodésique, 62,359 [Fairhaid_Bretagnon 1990] Astronomy and Astrophysics, 229, 240-247 [Hirayama et al 1988] **** [IAU 1992] IAU 1991 resolutions. IAU Information Bulletin 67 [IAU 2001a] IAU 2000 resolutions. IAU Information Bulletin 88 [IAU 2001b] Erratum on resolution B1.3. Information Bulletin 89 [IAU 2003] IAU Division 1, ICRS Working Group Task 5: SOFA libraries. http://www.iau-sofa.rl.ac.uk/product.html [IERS 2003] IERS website. http://www.iers.org/map [Irwin-Fukushima 1999] Astronomy and Astrophysics, 348, 642-652 [Lemonde et al 2001] Ed. A.N.Luiten, Berlin (Springer) [Moyer 1981a] Celestial Mechanics, 23, 33-56 [Moyer 1981b] Celestial Mechanics, 23, 57-68 [Moyer 2000] Monograph 2: Deep Space Communication and Navigation series [Soffel et al 2003] prepared for the Astronomical Journal, asro-ph/0303376v1 [Standish 1998] Astronomy and Astrophysics, 336, 381-384 [Weyers et al 2001] Metrologia A, 38, 4, 343 Metric prescriptions [Damour et al 1991] Physical Review D, 43, 10, 3273-3307 [Damour et al 1992] Physical Review D, 45, 4, 1017-1044 [Damour et al 1993] Physical Review D, 47, 8, 3124-3135 [Damour et al 1994] Physical Review D, 49, 2, 618-635 [IAU 1992] IAU 1991 resolutions. IAU Information Bulletin 67 [IAU 2001a] IAU 2000 resolutions. IAU Information Bulletin 88 [IAU 2001b] Erratum on resolution B1.3. Information Bulletin 89 [IAU 2003] IAU Division 1, ICRS Working Group Task 5: SOFA libraries. http://www.iau-sofa.rl.ac.uk/product.html [IERS 2003] IERS website. http://www.iers.org/map [Klioner 1996] International Astronomical Union, 172, 39K, 309-320 [Klioner et al 1993] Physical Review D, 48, 4, 1451-1461 [Klioner et al 2003] astro-ph/0303377 v1 [Soffel et al 2003] prepared for the Astronomical Journal, asro-ph/0303376v1 RMI [GRGS 2001] Descriptif modèle de forces: logiciel GINS [Moisson 2000] (thèse). Observatoire de Paris [McCarthy Petit 2003] IERS conventions 2003 http://maia.usno.navy.mil/conv2000.html.