Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ICS 214B: Transaction Processing and Distributed Data Management Course Project 1 Distributed Travel Reservation System Client Client Client Client Workflow Controller Transaction Manager Resource Manager Resource Manager Resource Manager Resource Manager Flights Hotels Cars Customers ICS214B Notes 03 2 Project Plan • Two steps: – Build centralized travel reservation system Components: Resource Manager – Add distributed functionality Components: Workflow Controller, Transaction Manager ICS214B Notes 03 3 Part 1: Simple Travel Resource Manager Client start(); queryFlightPrice(); reserveFlight(); queryCarPrice(); reserveCar(); … commit(); Client Client Client interface ResourceManager Resource Manager Flights, Hotels, Cars, Customers ICS214B Notes 03 4 Resource Manager Functionality • Data Manipulation – Query and Update flight, car, and hotel data – Make reservations • Transactions with ACID properties • Technical/Testing Support ICS214B Notes 03 5 Data Definition (fixed) • Stores the following tables: – – – – – FLIGHTS(flightNum, price, numSeats, numAvail) HOTELS(location, price, numRooms, numAvail) CARS(location, price, numCars, numAvail) CUSTOMERS(custName) RESERVATIONS(custName, resvType, resvKey) • Simple (unrealistic) assumptions – – – – One hotel, rental car agency per location One airline All seats in a flight cost the same All rooms and cars in a location cost the same ICS214B Notes 03 6 Data Manipulation Operations • Flights – – – – – – – Add flights Add seats to flight Remove seats from a flight Cancel flight Query number of seats available on a flight Query price of a flight Reserve seat in flight for a given customer • Similar operations for Cars and Hotels – Described in interface ResourceManager.java ICS214B Notes 03 7 Important concepts review • We assume you’ve completed ICS214(A) or equivalent • Here we present a short overview just to refresh your memory ICS214B Notes 03 8 Important concepts review Consistent DB ICS214B T Notes 03 Consistent DB’ 9 Big assumption: If T starts with consistent state + T executes in isolation T leaves consistent state ICS214B Notes 03 10 What can go wrong? • Transaction bug • DBMS bug • Hardware failure e.g., disk crash alters balance of account • System crash – CPU halts, memory wiped out, disk intact • Concurrency e.g.: T1: give 10% raise to programmers T2: change programmers systems analysts ICS214B Notes 03 11 Key problem: Unfinished transaction Example ICS214B Constraint: A=B T1: A A 2 B B2 Notes 03 12 T1: Read (A,t); t t2 Write (A,t); Read (B,t); t t2 Write (B,t); Output (A); failure! Output (B); A: 8 16 B: 8 16 A: 8 16 B: 8 memory ICS214B disk Notes 03 13 • Need atomicity: execute all actions of a transaction or none at all ICS214B Notes 03 14 Implementing Atomicity • In ICS214 (Fall 2002): – Logging • In this programming project, use – Shadow paging – Why? Shadow paging is simpler to implement But performance is lower than logging ICS214B Notes 03 15 Shadow Paging Overview • Each file is managed via a page table P – Each transaction T updates the file via a private page table – Commit T by replacing the public page table by a private one – Example: suppose DB has two files, “a” and “b” ICS214B Notes 03 16 MAIN MEMORY FOR T D I S K Master a b Pt[a,1] 1 2 3 ... P1a old Pt[b,1] 1 2 3 ... P1b old P2a old P2b old P1a new P2a new P2b new Pt´[a] 1 2 Master´ 3 a ... b Pt´[b] 1 2 3 ... Master Pointer ICS214B Notes 03 17 D I S K Master a b Pt[a,1] 1 2 3 ... P1a old Pt[b,1] 1 2 3 ... P1b old P2a old P2b old P1a new P2a new P2b new Pt´[a] 1 2 Master´ 3 a ... b Pt´[b] 1 2 3 ... Master Pointer ICS214B Notes 03 18 D I S K Master a b Pt[a,1] 1 2 3 ... P1a old Pt[b,1] 1 2 3 ... P1b old P2a old P2b old P1a new P2a new P2b new Pt´[a] 1 2 Master´ 3 a ... b Pt´[b] 1 2 3 ... Master Pointer ICS214B Notes 03 19 SHADOW PAGING •It is a technique pioneered in System R •changes are made to a copy of a page (block) •When a transaction commits, the copy becomes the current page and the original is discarded ICS214B Notes 03 20 Single transaction Suppose transaction A starts up: •the current page table (directory) is copied to the shadow page table (shadow directory) •if the transaction updates a page, the original page is not altered, rather a copy is created and that is modified •the copy is pointed to by the current page table the shadow page table is never modified ICS214B Notes 03 21 Write operation When transaction Ti issues a write(A) command, the write operation is executed as follows (assuming data item A resides on page PA): 1. If page PA is not already in main-memory then issue input(PA) 2. If this is the first write operation on page PA by transaction Ti then: (a) allocate a new disk page (call it tPA) (b) copy PA into tPA (c) modify the current page table so that the entry corresponding to PA now points to tPA 3. perform the update on the page pointed to by tPA ICS214B Notes 03 22 Commit When transaction Ti commits: 1. Ensure all buffer pages in memory that have been modified are flushed to the disk. 2. output the current page table to disk 3. change the current page table to become the new page table 4. free the pages of the old shadow page table that are no longer necessary 5. read the old shadow page table and free its pages ICS214B Notes 03 23 Crash recovery What is required if the system crashes while a transaction is executing? •free up all modified pages •discard the current page table •reinstate the shadow page table as the current page table ICS214B Notes 03 24 Pros and cons •appears simple for single transaction environments •complexity increases for concurrent transactions •clustering diminishes quickly •not aware of any commercial implementations ICS214B Notes 03 25 Multiple transactions • What if two transactions update different pages of a file? – If they share their main memory copy of the page table, then committing one will commit the other’s updates too! • Use a private copy of page table, per transaction. To commit T, within a critical section: – get a private copy of the last committed value of the page table of each file modified by T – update their entries for pages modified by T – store the updated page tables on disk – write a new master record and master pointer, thereby installing the update just for T (// end of critical section) ICS214B Notes 03 26 Shadow Paging in Practice • Reference: R. Lorie, “Physical Integrity in a Large Segmented Database”ACM Trans. on DB Sys., March 1977. • Used in the Gemstone OO DBMS. • Not good for high-performance TP systems – count disk updates per transaction – how to do record-level locking? ICS214B Notes 03 27 Concurrency Control T1 T2 … DB (consistency constraints) ICS214B Tn • Use the 3 rules (wellformed xacts, legal scheduler, 2PL) • Support shared locks Notes 03 28 Simple Locking System • System transparently acquires locks when transactions access data • Holds all locks until transaction commits – Called “Strict 2-phase locking” – Strict 2PL automatically avoids cascading rollbacks # locks time ICS214B Notes 03 29 Implementing the RM • For simplicity, implement the tables using hashtables – Each row is a hashtable entry Create a class for every kind of row e.g., Flight Primary key is hashkey • For the RESERVATIONS table, you can merge with the CUSTOMERS table: include a List of reservations in each hashtable entry. ICS214B Notes 03 30 Implementing the RM • Java has convenient Hashtable and Vector classes • For durability, write the database to disk – You can use Java serialization to directly write the hashtables to disk – The class java.io.ObjectOutputStream might be helpful ICS214B Notes 03 31 Implementing the RM • Using serialized hashtables makes it for easy persistence • But does not use block-based I/O model – Low-performance • Need to adapt shadow paging for this model ICS214B Notes 03 32 Shadowing with hashtables • Have two copies of file on disk, with master pointer pointing to last committed copy • Last committed copy also cached in memory • Each transaction has private update list: hashtable of entries it has read or written • On commit: – Merge update list into in-memory table – Table written to disk using different filename – Master pointer updated to point to new file ICS214B Notes 03 33 MAIN MEMORY File0 A:3 B:5 C:2 ... D I S K In-Mem Copy A:3 B:5 C:2 ... Update List for T B:8 … … ... Master Pointer ICS214B Notes 03 34 MAIN MEMORY File0 A:3 B:5 C:2 ... D I S K In-Mem Copy A:3 B:8 C:2 ... Update List for T B:8 … … ... File1 A:3 B:8 C:2 ... Master Pointer ICS214B Notes 03 35 MAIN MEMORY File0 A:3 B:5 C:2 ... D I S K In-Mem Copy A:3 B:8 C:2 ... Update List for T B:8 … … ... File1 A:3 B:8 C:2 ... Master Pointer ICS214B Notes 03 36 Concurrency Control • We provide a lock manager • Supports two operations – lock(xid, itemName, READ|WRITE) – unlockAll(xid) • Implement two-phase locking using the supplied lock manager ICS214B Notes 03 37 Resource Manager Transactions • A client starts a transaction by calling the start() method – Returns a transaction id (xid) – Client includes xid in all data manipulation operation requests • Client calls commit(xid) or abort(xid) to finish a transaction • System crash or deadlock may forcibly abort transactions ICS214B Notes 03 38 Part 2: Distributed Travel Reservation System Client Client Client Client Workflow Controller Transaction Manager Resource Manager Resource Manager Resource Manager Resource Manager Flights Hotels Cars Customers ICS214B Notes 03 39 Part 2: Distributed Transactions • Add Workflow Control and Transaction Manager components • Implement 2-phase commit – To be covered later ICS214B Notes 03 40 Code base • project directory with two packages • lockmgr: do not change – lock & unlockAll in LockManager.java • transaction: your code here – ResourceManager.java: do not change – ResourceManagerImpl.java – Client.java – Makefile ICS214B Notes 03 41 Java RMI • RMI: Remote Method Invocation – The way Client talks to the RM • 1. Start rmiregistry – Use your own port number • 2. Start server (RM) – RM binds to a name at the registry • 3. Start Client – Client queries registry using the bind name • All taken care of in the code base ICS214B Notes 03 42 Java synchronized constructs • Convenient critical section implementation • Synchronized block: – Associated with any object – Before entering, thread obtains exclusive lock on obj. – no two threads inside synch. blocks belonging to same obj at same time • Synchronized methods: lock on “this” ICS214B Notes 03 43 Java synchronized statements • Synchronized block example: AAA synchronized (ht) { BBB } CCC • Synchronized method example: public synchronized void foo() { … } ICS214B SAME AS Notes 03 public void foo() { synchronized (this) { … } } 44 Java Hashtable • Table of (key,value) pairs Hashtable ht = new Hashtable(); … // Insertion ht.put(“Flight214, flt); … // Lookup flt = (Flight) ht.get(“Flight214”); ICS214B Notes 03 45 Java serialization • Object Serialization is process of writing the state of an object to a byte stream – Serializable objects can be written out to disk and restored easily. – Needed by RMI • Hashtable implements Serializable, so: ObjectOutputStream outS = new ObjectOutputStream(new FileOutputStream(“data/RMimage1”); outS.writeObject(ht); ---------------------------------------------ObjectInputStream inS = new ObjectInputStream(new FileInputStream(“data/RMimage1”); Hashtable ht = (Hashtable) inS.readObject(); ICS214B Notes 03 46 Project Logistics • Getting started: class home page – http://www.ics.uci.edu/~ics214b/ • Work on ICS SUN machines • Collaboration policy – As always, each group can have up to 3 students • Due dates: – part 1: Feb 15, Saturday – part 2: March 14, Friday • Submit: source code + short README • Grading: correct functionality – We’ll use our own Client.java to test your code ICS214B Notes 03 47 Acknowledgements • This project is based on a similar course project developed by Anand Rajaraman at Stanford, which was based on a similar project developed by Phil Bernstein at the University of Washington ICS214B Notes 03 48