Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Collections Framework “A collections framework is a unified architecture for representing and manipulating collections.” • Data Structures ---Interfaces & Implementations • Algorithms ----through java.util.Collections First Data Structures…. “Collections” A collection groups multiple elements into a single unit. • Vector • Hashtable • array Hierarchy of Interfaces Collection (java.util.Collection) • Set SortedSet • List • Queue Map • SortedMap Collection “A collection represents a group of objects known as its elements.” Some implementations allow duplicates, some don’t. Some implementations automatically sort the elements, some don’t. Types of Collections Set • Cannot contain duplicates. SortedSet • Is a set. • Maintains elements in sorted order. List • An ordered collection. Queue • A collection with additional insertion, extraction, and inspection operations. • Usually FIFO. Collections that aren’t Collections Map • Maps keys to values. • Cannot contain duplicate keys. SortedMap • Maintains key/value pairs in key order. Set Implementations HashSet • No order guarantee., like “hash table”. TreeSet • Value ordered. LinkedHashSet • Ordered oldest to newest, in terms of insertion. no duplicate elements are allowed in a Set List Implementations ArrayList • Most common. LinkedList • Use if insertions are often done at the head. Positional access: add elements at specific positions add and addAll without a position add to the end of the List set and remove return the element overwritten or removed Search: return the position of elements Extended Iteration: extended Iterator interface Range-view: return a sublist if the sublist is modified, the original List is as well Map Implementations Hashtable • No order guarantee • Constant time get , put • no nulls HashMap • Like Hashtable but allows nulls TreeMap • Key order iteration. LinkedHashMap Features of Maps Copying via constructor: //m is another Map Map<K, V> copy = new HashMap<K, V>(m); Check if 2 maps have same entries, if (m1.entrySet().containsAll(m2.entrySet())) { ... } Check if two maps have the same keys: if (m1.keySet().equals(m2.keySet())) { ... } Queue Implementations LinkedList • Allows for a FIFO queue. PriorityQueue • Iteration based on a value specified at element insertion. • Has the property that only the highestpriority element can be accessed at any time. About Sorted Collection Classes For o1.compareTo(o2): • returns negative if o1 < o2 • returns 0 if o1 == o2 • returns positive if o2 > o2 Sort by? Object Natural Ordering Byte, Integer, Long, Short, Float, Double, BigInteger, BigDecimal Signed Numerical Character Unsigned Numerical Boolean Boolean.FALSE < Boolean.TRUE File System Dependent Alphabetical by Path String Alphabetical Date Chronological CollationKey Locale-Specific Alphabetical SortedSet Differences from Set: • Iterator traverses the SortedSet in order • toArray returns an in order array of the elements • toString returns a String of the contents in order Implementations: ConcurrentSkipListSet, TreeSet SortedMap Differences from Map: • Iterator traverses the collection views of a SortedMap in order • toArray returns an in order array of the keys, values or entries • toString returns a String of the contents in order Implementations: ConcurrentSkipListMap, Now a few common data structures…. LinkedList Constant insertion and removal at first/last Constant insertion and removal at an Iterator Lookup is slow (linear time) Traversal is fast (constant time to find the next element) Ordered by insertion Trees Logarithmic insertion and lookup Sorted order Classes: TreeSet, TreeMap Review of some implemented common data structures Interfaces Implementations Hash Table Set Resizable Array HashSet List Tree Hash Table Linked List + Linked List LinkedHash Set TreeSet ArrayList LinkedList Queue Map HashMap TreeMap LinkedHash Map Traversing through Collections…. Iterate through Collections for-each • If modification of the Collection won’t be done, use the for-each. for (Object o : collection){ System.out.println(o); } Iterator • If modifications are to be done, or the foreach doesn’t excite you, use the Iterator. Iterator “Enables you to traverse through a collection and to remove elements from the collection selectively, if desired.” Use the iterator() method on the Collection to get the Collection’s Iterator. Methods: • boolean hasNext() • Object next() • void remove() Example Vector vec = new Vector; // Populate it... Then later, iterate over its elements….. Iterator it = vec.iterator (); while (it.hasNext ()) { Object o = it.next (); //or whatever the class type is } Another example – no casting ArrayList<String> alist = new ArrayList<String>(); // . . . Add Strings to alist ………not showing this //now cycle through and visit each element in ArrayList for (Iterator<String> it = alist.iterator(); it.hasNext(); ) { String s = it.next(); //no casting done here System.out.println(s); } Example again – with for ArrayList<String> alist = new ArrayList<String>(); // . . . Add Strings to alist ……… for (String s : alist) { System.out.println(s); } Example again –older style with casting ArrayList<String> alist = new ArrayList<String>(); // . . . Add Strings to alist ……… for (Iterator it = alist.iterator(); it.hasNext(); ) { String s = (String)it.next(); // Downcasting is required pre Java 5. System.out.println(s); } ListIterator Besides the basic Iterator class, ListIterator is implemented by the classes that implement the List interface (ArrayList, LinkedList, and Vector) Some methods: int nextIndex() Returns the index of the element that would be returned by a subsequent call to next(). int previousIndex() Returns the index of the element that would be returned by a subsequent call to previous(). Converting Collection to Arrays Some Collections allow you to convert to an Array //c is a Collection of Objects Object[] a = c.toArray(); //c is a collection of Strings //we pass an empty string so the compiler knows the correct result type String[] a = c.toArray(new String[0]); Now for ALGORITHMS java.util.Collections -- HOW to get some predefined useful ALGORITHMS ---static method ALGORITHMS java.util.Collections methods The collections class has the following methods (static)..see API for complete list: • sort(List <?> list) - sort the list • binarySearch(List<? > list, T key) –binary search for key • reverse(List<?> list) - reverse the list • fill(List <? super T> list, E value) overwrite every value in list with value • copy(List <? super T> src, List<? extends T> dest) - copy all the elements from src into dest • swap(List<?> list, int i, int j) - swap the elements at the ith and jth position in list • addAll(Collection<? super T> c, T... MORE ALGORITHMS java.util.Collections methods •frequency(Collection<?> c, Object o) - how many times does o appear in c •disjoint(Collection<?> c1, Collection<?> c2) returns true if c1 and c2 share no elements •min(Collection<? extends T> coll) – returns min (see API for overloaded min) •max(Collection<? extends T> coll) – returns max (see API for voverloaded max) Algorithms—example Sort import java.util.*; public class Sort { public static void main(String[] args) { List<String> list = Arrays.asList(args); //sort using the elements comparator Collections.sort(list); System.out.println(list); //sort using your own comparator Collections.sort(list, new MyComparator()); System.out.println(list); } } Algorithms- binarysearch example int pos = Collections.binarySearch(list, key); //if key isn’t in the list, add it in sorted order if (pos < 0) list.add(-pos-1), key); look up API to see why I add at -pos-1 position..hint if key is not found then binarySearch returns=(-(insertion point) - 1) Suppose pos= -4 that means insertion_point=3