Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CSC 427: Data Structures and Algorithm Analysis Fall 2010 Brute force approach KISS vs. generality HW2 examples: League Standings, Enigma, Musical Themes exhaustive search: string matching generate & test: N-queens, TSP, Knapsack inheritance & efficiency • ArrayList SortedArrayList 1 Brute force many problems do not require complex, clever algorithms a brute force (i.e., straightforward) approach may suffice consider the exponentiation application simple, iterative version: recursive version: ab = a * a * a * … * b ab = ab/2 * ab/2 while the recursive version is more efficient, O(log N) vs. O(N), is it really worth it? brute force works fine when the problem size is small only a few instances of the problem need to be solved need to build a prototype to study the problem 2 League Standings consider the league standings problem from HW2 a Map is a natural structure for keeping team-record pairs biggest problem was displaying team records in decreasing order (by wins) oTreeMap makes it easy to get the teams in alphabetical order oto order by score, need to sort the teams by number of wins elegant, generalizable, efficient solution: create a Record class that encapsulates the team name and win/loss record make this class Comparable, so that a team with more wins is > can then put Records in a list and sort 3 Record class class Record implements Comparable<Record> { private String teamName; private int numWins; private int numLosses; public Record(String name) { this.teamName = name; this.numWins = 0; this.numLosses = 0; } public void addWin() { this.numWins++; } public void addLoss() { this.numLosses++; } public int compareTo(Record other) { if (other.numWins == this.numWins) { return this.teamName.compareTo(other.teamName); } else { return other.numWins - this.numWins; } } Record class provides methods for adding wins & losses the compareTo method looks first at number of wins if same number of wins, looks next at team name the toString method makes it easy to display a Record public String toString() { return this.teamName + " " + this.numWins + "-" + this.numLosses; } } 4 Standings class public class Standings { public static void main(String[] args) { TreeMap<String, Record> teams = new TreeMap<String, Record>(); Scanner input = new Scanner(System.in); String team1 int score1 = String team2 int score2 = = input.next(); input.nextInt(); = input.next(); input.nextInt(); Collections.sort to order them while (score1 >= 0 || score2 >= 0) { if (!teams.containsKey(team1)) { teams.put(team1, new Record(team1)); } if (!teams.containsKey(team2)) { teams.put(team2, new Record(team2)); } if (score1 > score2) { teams.get(team1).addWin(); teams.get(team2).addLoss(); } else { teams.get(team1).addLoss(); teams.get(team2).addWin(); } team1 = input.next(); score1 = input.nextInt(); team2 = input.next(); score2 = input.nextInt(); } main method for solving the problem is fairly simple since Records are Comparable, can use ArrayList<Record> standings = new ArrayList<Record>(); for (String teamName : teams.keySet()) { standings.add(teams.get(teamName)); } Collections.sort(standings); for (Record t : standings) { System.out.println(t); } System.out.println("DONE"); } } 5 How efficient is this solution? let G = the number of games and T = the number of teams • while loop executes G times, each time through must read in teams & scores check to see if teams already stored in Map add record to Map if not already stored determine which team won/lost update records of both teams in Map • sorting the records requires constructing an empty ArrayList getting the keySet for the Map getting each record and storing in the Arraylist sorting the ArrayList • displaying the sorted records 6 Simpler version? is the development of a new Record class really necessary? is there a (reasonable) upper limit on the number of games? e.g., suppose we knew/guessed there were at most 100 games we could avoid code complexity by making ~100 passes through the teams traverse teams, displaying all teams with 100 wins, then… traverse teams, displaying all teams with 99 wins, then… traverse teams, displaying all teams with 98 wins, then … … traverse teams, displaying all teams with 0 wins how inefficient is this? 7 public class StandingsBrute { public static void main(String[] args) { TreeMap<String, Integer> wins = new TreeMap<String, Integer>(); TreeMap<String, Integer> losses = new TreeMap<String, Integer>(); Scanner input = new Scanner(System.in); String team1 int score1 = String team2 int score2 = = input.next(); input.nextInt(); = input.next(); input.nextInt(); simpler version one maps for wins, another for losses must keep track of num games int numGames = 0; while (score1 >= 0 || score2 >= 0) { if (!wins.containsKey(team1)) { wins.put(team1, 0); losses.put(team1, 0); } if (!wins.containsKey(team2)) { wins.put(team2, 0); losses.put(team2, 0); } if (score1 > score2) { wins.put(team1, wins.get(team1)+1); losses.put(team2, losses.get(team2)+1); } else { wins.put(team2, wins.get(team2)+1); losses.put(team1, losses.get(team1)+1); } numGames++; team1 = input.next(); score1 = input.nextInt(); team2 = input.next(); score2 = input.nextInt(); } StandingsBrute class for (int i = numGames; i >= 0; i--) { for (String s : wins.keySet()) { int numWins = wins.get(s); if (numWins == i) { System.out.println(s + " " + wins.get(s) + "-" + losses.get(s)); } } } System.out.println("DONE"); } } 8 Incremental improvements? remove a record from the Map after displaying impact on efficiency? before traversing the keySet to display all teams with W wins, call containsValue(W) to make sure some exist impact on efficiency? make a pass throught the keySet and store win totals in an ArrayList then sort the win totals and traverse looking only for those totals impact on efficiency? 9 Enigma problem if we really wanted to model an Enigma machine, would want to define classes that model the components Rotor, Backplate, … that way, could easily generalize to interchangeable rotors, variable numbers of rotors, etc. if the goal is to just solve this problem, can go much simpler represent each rotor and backplate as a String connect letters using indexOf and charAt methods rotate rotors using substring and concatenation 10 public class Enigma { private String innerRotor; private String middleRotor; private String backplate; public Enigma(String inner, String middle, String back){ this.middleRotor = middle; this.innerRotor = inner; this.backplate = back; } public String encode(String message){ String middleCopy = this.middleRotor; String innerCopy = this.innerRotor; String encMessage = ""; for(int i = 0; i < message.length(); i++){ String temp = message.substring(i,i + 1); int tempPos = innerCopy.indexOf(temp); String buffer = backplate.substring(tempPos, tempPos + 1); tempPos = middleCopy.indexOf(buffer); encMessage += backplate.substring(tempPos, tempPos+1); innerCopy = rotate(innerCopy); if (innerCopy.equals(this.innerRotor)) { middleCopy = rotate(middleCopy); } } return encMessage; } private String rotate(String rotor){ return rotor.substring(rotor.length()-1,rotor.length()) + rotor.substring(0,rotor.length()-1); } . . . Enigma class here, chose to have some generality rotors and backplate are fields, initialized by a constructor encode and rotate are methods as a result, would be easy to add additional functionality encode multiple messages add a decode method create a GUI 11 Enigma class (cont.) . . . public static void main(String[] args) { Scanner input = new Scanner(System.in); String inner = input.nextLine(); String middle = input.nextLine(); String back = input.nextLine(); String message = input.nextLine(); Enigma coder = new Enigma(inner, middle, back); what is the purpose of the substring? why is "." added to the end of the coded message? String coded = coder.encode(message.substring(0, message.length()-1)); System.out.println(coded + "."); } } by designing the solution with fields and methods, can easily add a GUI 12 Musical Themes problem this was by far the trickiest solution to code, but also most concise checking to see whether two sequences of notes are similar is fairly straightforward can make use of char substraction 'B' – 'A' = 1 need to systematically try subsequences of the score for matches could start with the longest possible match, shorten until find a match could start with shortest possible match, lengthen until no more matches ABCEGDEFAC ABCEGDEFAC ABCEGDEFAC ABCEGDEFAC ABCEGDEFAC ABCEGDEFAC ABCEGDEFAC 13 public class Themes { private static boolean matches(String seq1, String seq2) { for (int i = 0; i < seq1.length() - 1; i++) { int diff1 = (7 + seq1.charAt(i + 1) - seq1.charAt(i)) % 7; int diff2 = (7 + seq2.charAt(i + 1) - seq2.charAt(i)) % 7; if (diff1 != diff2) { return false; } } return true; } private static String findMatch(String seq) { for (int matchSize = seq.length() / 2; matchSize > 1; matchSize--) { int stop1 = seq.length() - (2 * matchSize); for (int start1 = 0; start1 <= stop1; start1++) { int stop2 = seq.length() - matchSize; for (int start2 = start1 + matchSize; start2 <= stop2; start2++) { String sub1 = seq.substring(start1, start1 + matchSize); String sub2 = seq.substring(start2, start2 + matchSize); if (Themes.matches(sub1, sub2)) { return sub1; } } } } return seq.substring(0, 1); } public static void main(String[] args) { Scanner input = new Scanner(System.in); int numThemes = input.nextInt(); for (int i = 0; i < numThemes; i++) { System.out.println(Themes.findMatch(input.next())); } } } Themes class matches: determines whether two sequences of same length are similar uses % op findMatch: tries every possible pair of themes starts with longest, goes left-to-right TRICKY, but concise 14 Exhaustive search in the worst case, the themes program must try (almost) every possible pair of subsequences for a match for long short approach, if no matches of size >= 2, can simply return first char for short->long approach, can stop each pass as soon as a match is found related example: string matching consider the task of the String indexOf method find the first occurrence of a desired substring in a string this problem occurs in many application areas, e.g., DNA sequencing CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG… TAGAG 15 Exhaustive string matching the brute force/exhaustive approach is to sequentially search CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG… CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG… CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG… CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG… … CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG… public static int match(String seq, String desired) { for (int start = 0; start <= seq.length() – desired.length(); start++) { String sub = seq.substring(start, start+desired.length()); if (sub.equals(desired)) { return start; } } return -1; } efficiency of search? we can do better (more later) 16 Generate & test sometimes exhaustive algorithms are referred to as "generate & test" can express algorithm as generating each candidate solution systematically, testing each to see if the candidate is actually a solution musical themes: try seq.substring(0, seq.length()/2) if no match, try seq.substring(0, seq.length()/2 – 1) if no match, try seq.substring(1, seq.length()/2) if no match, try seq.substring(2, seq.length()/2+1) … string matching: try seq.substring(0, desired.length()) if no match, try seq.substring(1, desired.length()+1) if no match, try seq.substring(2, desired.length()+2) … 17 Generate & test: N-queens given an NxN chess board, place a queen on each row so that no queen is in jeopardy generate & test approach systematically generate every possible arrangement test each one to see if it is a valid solution this will work (in theory), but the size of the search space may be prohibitive 4x4 board 16 4 = 1,820 arrangements 4! = 24 arrangements 8x8 board 64 8 = 131,198,072 arrangements again, we can do better (more later) 8! = 40,320 arrangements 18 nP-hard problems: traveling salesman there are some problems for which there is no known "efficient" algorithm (i.e., nothing polynomial) known as nP-hard problems generate & test may be the only option Traveling Salesman Problem: A salesman must make a complete tour of a given set of cities (no city visited twice except start/end city) such that the total distance traveled is minimized. 40 example: find the shortest tour given this map 1 50 2 10 generate & test try every possible route 10 3 4 90 70 20 efficiency? 5 80 19 xkcd: Traveling Salesman Problem comic a dynamic programming approach (more later) can improve performance slightly, but still intractable for reasonably large N 20 nP-hard problems: knapsack problem another nP-hard problem: Knapsack Problem: Given N items of known weights w1,…,wN and values v1,…,vN and a knapsack of capacity W, find the most value subset of items that fit in the knapsack. example: suppose a knapsack with capacity of 50 lb. Which items do you take? tiara coin collection HDTV laptop silverware stereo PDA clock $5000 $2200 $2100 $2000 $1200 $800 $600 $300 3 lbs 5 lbs 40 lbs 8 lbs 10 lbs 25 lbs 1 lb 4 lbs generate & test solution: try every subset & select the one with greatest value 21 Dictionary revisited recall the Dictionary class earlier import import import import java.util.List; java.util.ArrayList; java.util.Scanner; java.io.File; public class Dictionary { private List<String> words; public Dictionary() { this.words = new ArrayList<String>(); } the ArrayList add method simply appends the item at the end O(1) public Dictionary(String filename) { this(); try { Scanner infile = new Scanner(new File(filename)); while (infile.hasNext()) { String nextWord = infile.next(); this.words.add(nextWord.toLowerCase()); } } catch (java.io.FileNotFoundException e) { System.out.println("FILE NOT FOUND"); } the ArrayList contains method performs sequential search O(N) } public void add(String newWord) { this.words.add(newWord.toLowerCase()); } this is OK if we are doing lots of adds and few searches public void remove(String oldWord) { this.words.remove(oldWord.toLowerCase()); } public boolean contains(String testWord) { return this.words.contains(testWord.toLowerCase()); } } 22 Timing dictionary searches we can use our StopWatch class to verify the O(N) efficiency dict. size 38,621 77,242 144,484 insert time 401 msec 612 msec 1123 msec dict. size 38,621 77,242 144,484 search time 1.10 msec 2.61 msec 5.01 msec execution time roughly doubles as dictionary size doubles import java.util.Scanner; import java.io.File; public class DictionaryTimer { public static void main(String[] args) { System.out.println("Enter name of dictionary file:"); Scanner input = new Scanner(System.in); String dictFile = input.next(); StopWatch timer = new StopWatch(); timer.start(); Dictionary dict = new Dictionary(dictFile); timer.stop(); System.out.println(timer.getElapsedTime()); timer.start(); for (int i = 0; i < 100; i++) { dict.contains("zzyzyba"); } timer.stop(); System.out.println(timer.getElapsedTime()/100.0); } } 23 Sorting the list if searches were common, then we might want to make use of binary search this requires sorting the words first, however we could change the Dictionary class to do the sorting and searching a more general solution would be to extend the ArrayList class to SortedArrayList could then be used in any application that called for a sorted list recall: public class java.util.ArrayList<E> implements List<E> { public ArrayList() { … } public boolean add(E item) { … } public void add(int index, E item) { … } public E get(int index) { … } public E set(int index, E item) { … } public int indexOf(Object item) { … } public boolean contains(Object item) { … } public boolean remove(Object item) { … } public E remove(int index) { … } … } 24 SortedArrayList (v.1) using inheritance, we only need to redefine what is new add method sorts after adding; indexOf uses binary search no additional fields required big-Oh for add? big-Oh for indexOf? import java.util.ArrayList; import java.util.Collections; public class SortedArrayList<E extends Comparable<? super E>> extends ArrayList<E> { public SortedArrayList() { super(); } public boolean add(E item) { super.add(item); Collections.sort(this); return true; } public int indexOf(Object item) { return Collections.binarySearch(this, (E)item); } } 25 SortedArrayList (v.2) is this version any better? when? big-Oh for add? big-Oh for indexOf? import java.util.ArrayList; import java.util.Collections; public class SortedArrayList<E extends Comparable<? super E>> extends ArrayList<E> { public SortedArrayList() { super(); } public boolean add(E item) { super.add(item); return true; } // NOTE: COULD REMOVE THIS METHOD AND // JUST INHERIT THE ADD METHOD FROM // ARRAYLIST AS IS public int indexOf(Object item) { Collections.sort(this); return Collections.binarySearch(this, (E)item); } } 26 SortedArrayList (v.3) if insertions and searches are mixed, sorting for each insertion/search is extremely inefficient instead, could take the time to insert each item into its correct position big-Oh for add? big-Oh for indexOf? import java.util.ArrayList; import java.util.Collections; public class SortedArrayList<E extends Comparable<? super E>> extends ArrayList<E> { public SortedArrayList() { super(); } public boolean add(E item) { int i; for (i = 0; i < this.size(); i++) { if (item.compareTo(this.get(i)) < 0) { break; } } super.add(i, item); return true; } public int indexOf(Object item) { return Collections.binarySearch(this, (E)item); } } search from the start vs. from the end? 27 Dictionary using SortedArrayList note that repeated calls to add serve as insertion sort dict. size 38,621 77,242 144,484 import java.util.Scanner; import java.io.File; import java.util.Date; public class DictionaryTimer { insert time 29.2 sec 127.9 sec 526.2 sec public static void main(String[] args) { System.out.println("Enter name of dictionary file:"); Scanner input = new Scanner(System.in); String dictFile = input.next(); StopWatch timer = new StopWatch(); dict. size 38,621 77,242 144,484 search time 0.0 msec 0.0 msec 0.1 msec insertion time roughly quadruples as dictionary size doubles; search time is trivial timer.start(); Dictionary dict = new Dictionary(dictFile); timer.stop(); System.out.println(timer.getElapsedTime()); timer.start(); for (int i = 0; i < 100; i++) { dict.contains("zzyzyba"); } timer.stop(); System.out.println(timer.getElapsedTime()/100.0); } } 28 SortedArrayList (v.4) if adds tend to be done in groups (as in loading the dictionary) it might pay to perform lazy insertions & keep track of whether sorted big-Oh for add? big-Oh for indexOf? if desired, could still provide addInOrder method (as before) import java.util.ArrayList; import java.util.Collections; public class SortedArrayList<E extends Comparable<? super E>> extends ArrayList<E> { private boolean isSorted; public SortedArrayList() { super(); this.isSorted = true; } public boolean add(E item) { this.isSorted = false; return super.add(item); } public int indexOf(Object item) { if (!this.isSorted) { Collections.sort(this); this.isSorted = true; } return Collections.binarySearch(this, (E)item); } } 29 Timing the lazy dictionary on searches modify the Dictionary class to use the lazy SortedArrayList dict. size 38,621 77,242 144,484 insert time 340 msec 661 msec 1113 msec dict. size 38,621 77,242 144,484 1st search 10 msec 61 msec 140 msec dict. size 38,621 77,242 144,484 search time 0.0 msec 0.0 msec 0.1 msec import java.util.Scanner; import java.io.File; import java.util.Date; public class DictionaryTimer { public static void main(String[] args) { System.out.println("Enter name of dictionary file:"); Scanner input = new Scanner(System.in); String dictFile = input.next(); StopWatch timer = new StopWatch() timer.start(); Dictionary dict = new Dictionary(dictFile); timer.stop(); System.out.println(timer.getElapsedTime()); timer.start(); dict.contains("zzyzyba"); timer.stop(); System.out.println(timer.getElapsedTime()); timer.start(); for (int i = 0; i < 100; i++) { dict.contains("zzyzyba"); } timer.stop(); System.out.println(timer.getElapsedTime()/100.0); } } 30