Download Overview and History - Dave Reed's Home Page

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CSC 427: Data Structures and Algorithm Analysis
Fall 2010
Brute force approach
 KISS vs. generality
 HW2 examples: League Standings, Enigma, Musical Themes
 exhaustive search: string matching
 generate & test: N-queens, TSP, Knapsack
 inheritance & efficiency
• ArrayList  SortedArrayList
1
Brute force
many problems do not require complex, clever algorithms
 a brute force (i.e., straightforward) approach may suffice
 consider the exponentiation application
simple, iterative version:
recursive version:
ab = a * a * a * … * b
ab = ab/2 * ab/2
while the recursive version is more efficient, O(log N) vs. O(N), is it really worth it?
brute force works fine when
 the problem size is small
 only a few instances of the problem need to be solved
 need to build a prototype to study the problem
2
League Standings
consider the league standings problem from HW2
 a Map is a natural structure for keeping team-record pairs
 biggest problem was displaying team records in decreasing order (by wins)
oTreeMap makes it easy to get the teams in alphabetical order
oto order by score, need to sort the teams by number of wins
elegant, generalizable, efficient solution:
 create a Record class that encapsulates the team name and win/loss record
 make this class Comparable, so that a team with more wins is >
 can then put Records in a list and sort
3
Record class
class Record implements Comparable<Record> {
private String teamName;
private int numWins;
private int numLosses;
public Record(String name) {
this.teamName = name;
this.numWins = 0;
this.numLosses = 0;
}
public void addWin() {
this.numWins++;
}
public void addLoss() {
this.numLosses++;
}
public int compareTo(Record other) {
if (other.numWins == this.numWins) {
return this.teamName.compareTo(other.teamName);
}
else {
return other.numWins - this.numWins;
}
}
Record class provides
methods for adding wins &
losses
the compareTo
method looks first at
number of wins
if same number of wins,
looks next at team name
the toString method
makes it easy to display a
Record
public String toString() {
return this.teamName + " " + this.numWins + "-" + this.numLosses;
}
}
4
Standings class
public class Standings {
public static void main(String[] args) {
TreeMap<String, Record> teams = new TreeMap<String, Record>();
Scanner input = new Scanner(System.in);
String team1
int score1 =
String team2
int score2 =
= input.next();
input.nextInt();
= input.next();
input.nextInt();
Collections.sort
to order them
while (score1 >= 0 || score2 >= 0) {
if (!teams.containsKey(team1)) {
teams.put(team1, new Record(team1));
}
if (!teams.containsKey(team2)) {
teams.put(team2, new Record(team2));
}
if (score1 > score2) {
teams.get(team1).addWin();
teams.get(team2).addLoss();
}
else {
teams.get(team1).addLoss();
teams.get(team2).addWin();
}
team1 = input.next();
score1 = input.nextInt();
team2 = input.next();
score2 = input.nextInt();
}
main method for solving
the problem is fairly
simple
since Records are
Comparable, can use
ArrayList<Record> standings =
new ArrayList<Record>();
for (String teamName : teams.keySet()) {
standings.add(teams.get(teamName));
}
Collections.sort(standings);
for (Record t : standings) {
System.out.println(t);
}
System.out.println("DONE");
}
}
5
How efficient is this solution?
let G = the number of games and T = the number of teams
• while loop executes G times, each time through must
read in teams & scores
check to see if teams already stored in Map
add record to Map if not already stored
determine which team won/lost
update records of both teams in Map
• sorting the records requires
constructing an empty ArrayList
getting the keySet for the Map
getting each record and storing in the Arraylist
sorting the ArrayList
• displaying the sorted records
6
Simpler version?
is the development of a new Record class really necessary?
is there a (reasonable) upper limit on the number of games?
 e.g., suppose we knew/guessed there were at most 100 games
 we could avoid code complexity by making ~100 passes through the teams
traverse teams, displaying all teams with 100 wins, then…
traverse teams, displaying all teams with 99 wins, then…
traverse teams, displaying all teams with 98 wins, then …
…
traverse teams, displaying all teams with 0 wins
 how inefficient is this?
7
public class StandingsBrute {
public static void main(String[] args) {
TreeMap<String, Integer> wins = new TreeMap<String, Integer>();
TreeMap<String, Integer> losses = new TreeMap<String, Integer>();
Scanner input = new Scanner(System.in);
String team1
int score1 =
String team2
int score2 =
= input.next();
input.nextInt();
= input.next();
input.nextInt();
simpler version
one maps for wins,
another for losses
must keep track of
num games
int numGames = 0;
while (score1 >= 0 || score2 >= 0) {
if (!wins.containsKey(team1)) {
wins.put(team1, 0);
losses.put(team1, 0);
}
if (!wins.containsKey(team2)) {
wins.put(team2, 0);
losses.put(team2, 0);
}
if (score1 > score2) {
wins.put(team1, wins.get(team1)+1);
losses.put(team2, losses.get(team2)+1);
}
else {
wins.put(team2, wins.get(team2)+1);
losses.put(team1, losses.get(team1)+1);
}
numGames++;
team1 = input.next();
score1 = input.nextInt();
team2 = input.next();
score2 = input.nextInt();
}
StandingsBrute
class
for (int i = numGames; i >= 0; i--) {
for (String s : wins.keySet()) {
int numWins = wins.get(s);
if (numWins == i) {
System.out.println(s + " " +
wins.get(s) + "-" +
losses.get(s));
}
}
}
System.out.println("DONE");
}
}
8
Incremental improvements?
remove a record from the Map after displaying
 impact on efficiency?
before traversing the keySet to display all teams with W wins, call
containsValue(W) to make sure some exist
 impact on efficiency?
make a pass throught the keySet and store win totals in an ArrayList
then sort the win totals and traverse looking only for those totals
 impact on efficiency?
9
Enigma problem
if we really wanted to model an Enigma machine, would want to define
classes that model the components
 Rotor, Backplate, …
that way, could easily generalize to interchangeable rotors, variable
numbers of rotors, etc.
if the goal is to just solve this problem, can go much simpler
 represent each rotor and backplate as a String
 connect letters using indexOf and charAt methods
 rotate rotors using substring and concatenation
10
public class Enigma {
private String innerRotor;
private String middleRotor;
private String backplate;
public Enigma(String inner, String middle, String back){
this.middleRotor = middle;
this.innerRotor = inner;
this.backplate = back;
}
public String encode(String message){
String middleCopy = this.middleRotor;
String innerCopy = this.innerRotor;
String encMessage = "";
for(int i = 0; i < message.length(); i++){
String temp = message.substring(i,i + 1);
int tempPos = innerCopy.indexOf(temp);
String buffer = backplate.substring(tempPos, tempPos + 1);
tempPos = middleCopy.indexOf(buffer);
encMessage += backplate.substring(tempPos, tempPos+1);
innerCopy = rotate(innerCopy);
if (innerCopy.equals(this.innerRotor)) {
middleCopy = rotate(middleCopy);
}
}
return encMessage;
}
private String rotate(String rotor){
return rotor.substring(rotor.length()-1,rotor.length()) +
rotor.substring(0,rotor.length()-1);
}
. . .
Enigma class
here, chose to have some
generality
 rotors and backplate are
fields, initialized by a
constructor
 encode and rotate are
methods
as a result, would be easy
to add additional
functionality
 encode multiple messages
 add a decode method
 create a GUI
11
Enigma class (cont.)
. . .
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String inner = input.nextLine();
String middle = input.nextLine();
String back = input.nextLine();
String message = input.nextLine();
Enigma coder = new Enigma(inner, middle, back);
what is the purpose of the
substring?
why is "." added to the end
of the coded message?
String coded =
coder.encode(message.substring(0, message.length()-1));
System.out.println(coded + ".");
}
}
by designing the solution
with fields and methods, can
easily add a GUI
12
Musical Themes problem
this was by far the trickiest solution to code, but also most concise
checking to see whether two sequences of notes are similar is fairly
straightforward
 can make use of char substraction
'B' – 'A' = 1
need to systematically try subsequences of the score for matches
 could start with the longest possible match, shorten until find a match
 could start with shortest possible match, lengthen until no more matches
ABCEGDEFAC
ABCEGDEFAC
ABCEGDEFAC
ABCEGDEFAC
ABCEGDEFAC
ABCEGDEFAC
ABCEGDEFAC
13
public class Themes {
private static boolean matches(String seq1, String seq2) {
for (int i = 0; i < seq1.length() - 1; i++) {
int diff1 = (7 + seq1.charAt(i + 1) - seq1.charAt(i)) % 7;
int diff2 = (7 + seq2.charAt(i + 1) - seq2.charAt(i)) % 7;
if (diff1 != diff2) {
return false;
}
}
return true;
}
private static String findMatch(String seq) {
for (int matchSize = seq.length() / 2; matchSize > 1; matchSize--) {
int stop1 = seq.length() - (2 * matchSize);
for (int start1 = 0; start1 <= stop1; start1++) {
int stop2 = seq.length() - matchSize;
for (int start2 = start1 + matchSize; start2 <= stop2; start2++) {
String sub1 = seq.substring(start1, start1 + matchSize);
String sub2 = seq.substring(start2, start2 + matchSize);
if (Themes.matches(sub1, sub2)) {
return sub1;
}
}
}
}
return seq.substring(0, 1);
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int numThemes = input.nextInt();
for (int i = 0; i < numThemes; i++) {
System.out.println(Themes.findMatch(input.next()));
}
}
}
Themes
class
matches:
 determines
whether two
sequences of
same length
are similar
 uses % op
findMatch:
 tries every
possible pair of
themes
 starts with
longest, goes
left-to-right
 TRICKY, but
concise
14
Exhaustive search
in the worst case, the themes program must try (almost) every possible
pair of subsequences for a match
 for long short approach, if no matches of size >= 2, can simply return first char
 for short->long approach, can stop each pass as soon as a match is found
related example: string matching
 consider the task of the String indexOf method
find the first occurrence of a desired substring in a string
 this problem occurs in many application areas, e.g., DNA sequencing
CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG…
TAGAG
15
Exhaustive string matching
the brute force/exhaustive approach is to sequentially search
CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG…
CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG…
CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG…
CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG…
…
CGGTAGCTTGCCTAGGAGGCTTCTCATAGAGCTCGATCGGTACG…
public static int match(String seq, String desired) {
for (int start = 0; start <= seq.length() – desired.length(); start++) {
String sub = seq.substring(start, start+desired.length());
if (sub.equals(desired)) {
return start;
}
}
return -1;
}
efficiency of search?
we can do better (more later)
16
Generate & test
sometimes exhaustive algorithms are referred to as "generate & test"
 can express algorithm as generating each candidate solution systematically,
testing each to see if the candidate is actually a solution
musical themes:
try seq.substring(0, seq.length()/2)
if no match, try seq.substring(0, seq.length()/2 – 1)
if no match, try seq.substring(1, seq.length()/2)
if no match, try seq.substring(2, seq.length()/2+1)
…
string matching:
try seq.substring(0, desired.length())
if no match, try seq.substring(1, desired.length()+1)
if no match, try seq.substring(2, desired.length()+2)
…
17
Generate & test: N-queens
given an NxN chess board, place a queen
on each row so that no queen is in jeopardy
generate & test approach
 systematically generate every possible
arrangement
 test each one to see if it is a valid solution
this will work (in theory), but the size of the search space may be prohibitive
4x4 board

16 
 
4
= 1,820 arrangements
4! = 24 arrangements
8x8 board

 64 
 
8
= 131,198,072 arrangements
again, we can
do better
(more later)
8! = 40,320 arrangements
18
nP-hard problems: traveling salesman
there are some problems for which there is no known "efficient" algorithm
(i.e., nothing polynomial)  known as nP-hard problems
generate & test may be the only option
Traveling Salesman Problem: A salesman must make a complete tour of a given set
of cities (no city visited twice except start/end city) such that the total distance traveled is
minimized.
40
example: find the shortest tour given this map
1
50
2
10
generate & test  try every possible route
10
3
4
90
70
20
efficiency?
5
80
19
xkcd: Traveling Salesman Problem comic
a dynamic programming approach (more later) can improve
performance slightly, but still intractable for reasonably large N
20
nP-hard problems: knapsack problem
another nP-hard problem:
Knapsack Problem: Given N items of known weights w1,…,wN and values v1,…,vN and
a knapsack of capacity W, find the most value subset of items that fit in the knapsack.
example: suppose a knapsack with capacity of 50 lb. Which items do you take?
tiara
coin collection
HDTV
laptop
silverware
stereo
PDA
clock
$5000
$2200
$2100
$2000
$1200
$800
$600
$300
3 lbs
5 lbs
40 lbs
8 lbs
10 lbs
25 lbs
1 lb
4 lbs
generate & test solution:
 try every subset & select the one with greatest value
21
Dictionary revisited
recall the Dictionary
class earlier
import
import
import
import
java.util.List;
java.util.ArrayList;
java.util.Scanner;
java.io.File;
public class Dictionary {
private List<String> words;
public Dictionary() {
this.words = new ArrayList<String>();
}
 the ArrayList add
method simply
appends the item at
the end  O(1)
public Dictionary(String filename) {
this();
try {
Scanner infile = new Scanner(new File(filename));
while (infile.hasNext()) {
String nextWord = infile.next();
this.words.add(nextWord.toLowerCase());
}
}
catch (java.io.FileNotFoundException e) {
System.out.println("FILE NOT FOUND");
}
 the ArrayList contains
method performs
sequential search
 O(N)
}
public void add(String newWord) {
this.words.add(newWord.toLowerCase());
}
this is OK if we are
doing lots of adds
and few searches
public void remove(String oldWord) {
this.words.remove(oldWord.toLowerCase());
}
public boolean contains(String testWord) {
return this.words.contains(testWord.toLowerCase());
}
}
22
Timing dictionary searches
we can use our
StopWatch class to
verify the O(N)
efficiency
dict. size
38,621
77,242
144,484
insert time
401 msec
612 msec
1123 msec
dict. size
38,621
77,242
144,484
search time
1.10 msec
2.61 msec
5.01 msec
execution time
roughly doubles as
dictionary size
doubles
import java.util.Scanner;
import java.io.File;
public class DictionaryTimer {
public static void main(String[] args) {
System.out.println("Enter name of dictionary file:");
Scanner input = new Scanner(System.in);
String dictFile = input.next();
StopWatch timer = new StopWatch();
timer.start();
Dictionary dict = new Dictionary(dictFile);
timer.stop();
System.out.println(timer.getElapsedTime());
timer.start();
for (int i = 0; i < 100; i++) {
dict.contains("zzyzyba");
}
timer.stop();
System.out.println(timer.getElapsedTime()/100.0);
}
}
23
Sorting the list
if searches were common, then we might want to make use of binary search
 this requires sorting the words first, however
we could change the Dictionary class to do the sorting and searching
 a more general solution would be to extend the ArrayList class to SortedArrayList
 could then be used in any application that called for a sorted list
recall:
public class java.util.ArrayList<E> implements List<E> {
public ArrayList() { … }
public boolean add(E item) { … }
public void add(int index, E item) { … }
public E get(int index) { … }
public E set(int index, E item) { … }
public int indexOf(Object item) { … }
public boolean contains(Object item) { … }
public boolean remove(Object item) { … }
public E remove(int index) { … }
…
}
24
SortedArrayList (v.1)
using inheritance, we only need to redefine what is new
 add method sorts after adding; indexOf uses binary search
 no additional fields required
 big-Oh for add? big-Oh for indexOf?
import java.util.ArrayList;
import java.util.Collections;
public class SortedArrayList<E extends Comparable<? super E>> extends ArrayList<E> {
public SortedArrayList() {
super();
}
public boolean add(E item) {
super.add(item);
Collections.sort(this);
return true;
}
public int indexOf(Object item) {
return Collections.binarySearch(this, (E)item);
}
}
25
SortedArrayList (v.2)
is this version any better? when?
 big-Oh for add?
 big-Oh for indexOf?
import java.util.ArrayList;
import java.util.Collections;
public class SortedArrayList<E extends Comparable<? super E>> extends ArrayList<E> {
public SortedArrayList() {
super();
}
public boolean add(E item) {
super.add(item);
return true;
}
// NOTE: COULD REMOVE THIS METHOD AND
// JUST INHERIT THE ADD METHOD FROM
// ARRAYLIST AS IS
public int indexOf(Object item) {
Collections.sort(this);
return Collections.binarySearch(this, (E)item);
}
}
26
SortedArrayList (v.3)
if insertions and searches are mixed, sorting for each insertion/search
is extremely inefficient
 instead, could take the time to insert each item into its correct position
 big-Oh for add? big-Oh for indexOf?
import java.util.ArrayList;
import java.util.Collections;
public class SortedArrayList<E extends Comparable<? super E>> extends ArrayList<E> {
public SortedArrayList() {
super();
}
public boolean add(E item) {
int i;
for (i = 0; i < this.size(); i++) {
if (item.compareTo(this.get(i)) < 0) {
break;
}
}
super.add(i, item);
return true;
}
public int indexOf(Object item) {
return Collections.binarySearch(this, (E)item);
}
}
search from the start vs.
from the end?
27
Dictionary using SortedArrayList
note that repeated
calls to add serve as
insertion sort
dict. size
38,621
77,242
144,484
import java.util.Scanner;
import java.io.File;
import java.util.Date;
public class DictionaryTimer {
insert time
29.2 sec
127.9 sec
526.2 sec
public static void main(String[] args) {
System.out.println("Enter name of dictionary file:");
Scanner input = new Scanner(System.in);
String dictFile = input.next();
StopWatch timer = new StopWatch();
dict. size
38,621
77,242
144,484
search time
0.0 msec
0.0 msec
0.1 msec
insertion time roughly
quadruples as
dictionary size
doubles; search time
is trivial
timer.start();
Dictionary dict = new Dictionary(dictFile);
timer.stop();
System.out.println(timer.getElapsedTime());
timer.start();
for (int i = 0; i < 100; i++) {
dict.contains("zzyzyba");
}
timer.stop();
System.out.println(timer.getElapsedTime()/100.0);
}
}
28
SortedArrayList (v.4)
if adds tend to be done in groups (as in loading the dictionary)
 it might pay to perform lazy insertions & keep track of whether sorted
 big-Oh for add? big-Oh for indexOf?
 if desired, could still provide addInOrder method (as before)
import java.util.ArrayList;
import java.util.Collections;
public class SortedArrayList<E extends Comparable<? super E>> extends ArrayList<E> {
private boolean isSorted;
public SortedArrayList() {
super();
this.isSorted = true;
}
public boolean add(E item) {
this.isSorted = false;
return super.add(item);
}
public int indexOf(Object item) {
if (!this.isSorted) {
Collections.sort(this);
this.isSorted = true;
}
return Collections.binarySearch(this, (E)item);
}
}
29
Timing the lazy dictionary on searches
modify the Dictionary
class to use the lazy
SortedArrayList
dict. size
38,621
77,242
144,484
insert time
340 msec
661 msec
1113 msec
dict. size
38,621
77,242
144,484
1st search
10 msec
61 msec
140 msec
dict. size
38,621
77,242
144,484
search time
0.0 msec
0.0 msec
0.1 msec
import java.util.Scanner;
import java.io.File;
import java.util.Date;
public class DictionaryTimer {
public static void main(String[] args) {
System.out.println("Enter name of dictionary file:");
Scanner input = new Scanner(System.in);
String dictFile = input.next();
StopWatch timer = new StopWatch()
timer.start();
Dictionary dict = new Dictionary(dictFile);
timer.stop();
System.out.println(timer.getElapsedTime());
timer.start();
dict.contains("zzyzyba");
timer.stop();
System.out.println(timer.getElapsedTime());
timer.start();
for (int i = 0; i < 100; i++) {
dict.contains("zzyzyba");
}
timer.stop();
System.out.println(timer.getElapsedTime()/100.0);
}
}
30