Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 4 Pre-Calculus OHHS 4.3 The Circular Functions • Solve Trig Functions of Any Angle • Solve Trig Functions of Real Numbers • Understand Periodic Functions • Analyze the 16-point Unit Circle 4-3 Anatomy of an Angle Initial Side Vertex 4-3 Angle Rotation Positive Angle Counter Clockwise Negative Angle Clockwise 4-3 Standard Position y Vertex at (0,0) Initial Side x 4-3 Quadrantal Angles • Terminal side of a standard position angle is on an axis. 4-3 Coterminal Angles • Angles with the same initial and terminal sides, but with different rotations. • All of these are coterminal angles. 45º 405º -315º 765º -675º -1035º 1485º -1395º How did I find all these angles? 45º+360ºn where n is an integer. 4-3 Example • Find a positive angle and a negative angle that are coterminal with • (a) 30 • 30+360 = 390 30-360=-330 • (b) 4 • 9 2 4 4 7 2 4 4 4-3 Now You Try P. 381, #1 4-3 1st Quadrant Trig P(x,y) r θ x r csc θ = y y y • sin θ = r x • cos θ = r y • tan θ = x x r sec θ = cot θ = y x 4-3 Example Let θ be the acute angle in standard position whose terminal side contains the point (5, 3). Find the six trigonometric functions of θ. 3 3 34 sin θ = = P(5,3) 34 34 34 θ 5 34 csc θ = 3 3 5 5 34 cos θ = = 34 34 3 tan θ = 5 34 sec θ = 5 5 cot θ = 3 4-3 Now You Try • P. 381, #5 4-3 Example Let θ be the acute angle in standard position whose terminal side contains the point (-5, 3). Find the six trigonometric functions of θ. 3 3 34 P(-5,3) sin θ = = 34 34 34 3 θ -5 34 csc θ = 3 -5 -5 34 cos θ = = 34 34 3 tan θ = 5 34 sec θ = 5 -5 cot θ = 3 4-3 Now You Try • P. 381, #11 4-3 Reference Angle • The angle formed between the terminal side and the nearest part of the x-axis. 4-3 Example • Find the exact values of the six trigonometric functions of 315 Reference 315 Angle 1 45 45 -1 2 1 2 sin 2 2 1 2 cos 2 2 tan 1 4-3 Now You Try • P. 381, #25 4-3 Example • Find the coordinates on the unit circle where θ = 210º sin 210º = θ = 210º x -1 2 y 3 2 30º tan 210º = 1 sec 210º = 3 1 , 2 2 2 3 3 3 3 cos 210º = 2 csc 210º = 3 3 2 1 2 cot 210º = 4-3 Now You Try • P. 381, #29 4-3 Trig Functions of Quadrantal Angles cot(180) = x 1 y 0 undefined 180 (-1, 0) sin(180) = r = x 2 + y2 2 0 2 r = (-1) + 0 = 1 y 0 1 r 4-3 Now You Try • P. 381, #41 4-3 Using One Trig Ratio to Find the Others 3 • If sin θ = and tan θ < 0, find cos θ. 7 • In which quadrant is this true? Q2 40 cos 7 3 7 θ 40 4-3 Using One Trig Ratio to Find the Others • If sec θ = 3 and sin θ > 0, find tan θ. • In which quadrant is this true? Q1 8 tan 2 2 1 3 82 2 1 4-3 Now You Try • P. 381, #43 4-3 The Unit Circle • A circle with radius = 1 1 • What is its circumference? • 2 4-3 The Unit Circle Wrapping Function π 2 3π 4 π 4 0 5π 4 0 π 4 Circumference 2 π 2 3π 4 3π 2 or 2 7π 4 5π 4 3π 2 7π 4 2 4-3 Using the Unit Circle to Find Trig Ratios • The terminal side of any angle t intersects the unit circle at (cos t, sin t) 4-3 Trigonometric Functions on the Unit Circle sin t = y 1 csc t = y cos t = x 1 sec t = x y tan t = x x cot t = y 4-3 Unit Circle Example • Find tan 3π 4 π 2 y tan = x π 4 0 tan = -1 (-1, 0) 0 5π 4 3π 2 tan = 0 7π 4 4-3 Periodic Functions • A function is periodic if there is a positive number c such that f(t + c) = f(t) for all values of t in the domain of f. • The smallest such number c is called the period of the function. 4-3 Your Turn 4-3 Home Work • P. 381, • #2, 6, 8, 18, 20, 22, 26, 30, 36, 40, 44, 48, 50, 52, 61-66, 68, 70 4-3