Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Aim: What good is the Unit Circle and how does it help us to understand the Trigonometric Functions? Do Now: A circle has a radius of 3 cm. Find the length of an arc cut off by a central angle of 2700. Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Angles in Standard Position y Q II Quadrant I 90 < < 180 0 < < 90 0 2 2 initial side x Q III Q IV 180 < < 270 3 270 < < 360 3 2 2 2 • An angle on the coordinate plane is in standard position when its vertex is at the origin and its initial side coincides with the nonnegative ray of the x-axis. • An angle formed by a counterclockwise rotation has a positive measure. • Angles whose side of 2the Aim:terminal Trig. Ratios for any Angle lies on one Course: Alg. & Trig.axes is a quadrantal angle. i.e. 900, 1800, 2700, 3600, 4500 etc. Co-terminal and Negative Angles y Q II Quadrant I 90 < < 180 0 < < 90 0 2 3000 = 2 -600 initial side x Q III Q IV 180 < < 270 3 270 < < 360 3 2 2 2 • An angle formed by a clockwise rotation has a negative measure • Angles in standard position having the same terminal side are co-terminal angles. Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Q II 90 < < 180 2 Angles Greater than 3600 y 0 Quadrant I 485 0 < < 90 0 2 1250 Q III Q IVx 180 < < 270 3 270 < < 360 3 2 2 2 • Angles whose terminal side rotates more than one revolution form angles with measures greater than 3600. • To find angles co-terminal with an another angle add or subtract 3600. 1250 and 4850 are co-terminal Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Model Problems Find the measure of an angle between 00 and 3600 co-terminal with a) 3850 25o b) 5750 215o c) -4050 315o In which quadrant or on which axis, does the terminal side of each angle lie? x0 0 a) 150 QII b) 540 c) -600 QIV axis Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. radius = 1 center at (0,0) Unit Circle 1 y cos , sin (x,y) -1 cos side adj. lengthside adj . to cos length hypo. 1 x length side opposite sin length hypo. length side opposite lengthside adj . to sin cos -1 1 1 cos lengthside adj . to sin length side opposite cos x Aim: Trig. Ratios for any Angle sin y Course: Alg. 2 & Trig. Aim: What good is the Unit Circle and how does it help us to understand the Trigonometric Functions? Do Now: Find the measure of an angle between 00 and 3600 co-terminal with an angle whose measure is -1250. Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Value of Sine & Cosine: Quadrant I y 1 radius = 1 cos 600, sin 600 (x,y) center at (0,0) 1 3 , 2 2 600 x 1 What is the value of coordinates (x,y)? -1 300-600-900 triangle Hypotenuse = 2 shorter leg Longer leg = 3 shorter leg Sine and Cosine values for angles in Quadrant I are positive. Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Value of Sine & Cosine: Quadrant II y 1 0 0 cos 120 , sin(x,y) 120 What is the value 1 3 , of coordinates (x,y)? 2 2 1 60º is the 600 1200 reference x -1 angle 1 (180º-120º) A reference angle for any angle in standard position is an acute angle formed by the terminal side of the given angle and the x-axis. directed sidedistance adj. What is the cosine/sine of a 1200 angle? 300-600-900 triangle Hypotenuse = 2 shorter leg Longer leg = 3 shorter leg Sine values for angles in Quadrant II are positive. Cosine values for angles in Quadrant II are negative. Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Value of Sine & Cosine: Quadrant III 1 y What is the value of coordinates (x,y)? (240º-180º) 2400 directed side distance adj. directed dist. 60º is the reference -1 angle What is the cosine/sine of a 2400 angle? 600 1 x 1 0 (x,y) cos 2400, sin 240 1 , 3 Sine and Cosine values for angles in 2 2 Quadrant III are both negative. Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Value of Sine & Cosine: Quadrant IV 1 y What is the value of coordinates (x,y)? 3000 600 (360º-300º) 1 directed dist. 60º is the reference -1 angle What is the cosine/sine of a 3000 angle? 1 x 1 , 3 2 2 (x,y) cos 3000, sin 3000 Sine values for angles in Quadrant IV are negative. Cosine values for angles in Quadrant IV are positive. Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Unit Circle – 12 Equal Arcs 1.2 5 6 , 5 6 - 1 2 , 3 1 1 2 + 2. . . 2 , 3 2 6 0.8 3 1 , 2 2 , 6 + 2. . . 3 1 , 2 2 0.6 0.4 0.2 -1 -0.5 = 6 0.5 1 -0.2 -0.4 7 6 , 7 6 3 2 ,- 1 3 -0.6 2 -0.8 + 2. . . - 1 2 ,- sin cos( 3 -1 2 2 -1.2 ) Aim: Trig. Ratios for any Angle 1 2 ,- 3 ,- 1 2 2 11 11 , + 2. . . 6 6 2 cos sin( 2 ) Course: Alg. 2 & Trig. Unit Circle – 8 Equal Arcs 1.2 3 4 , 3 4 - + 2. . . 2 , 2 1 2 Periodic 4 2 0.8 2 2 0.6 , 4 + 2. . . 2 , 2 0.4 0.2 -1 -0.5 = 4 0.5 1 -0.2 -0.4 -0.6 - 2 ,- 2 -0.8 2 ,- 2 2 Negative Angles 7 7 , Identities + 2. . . 4 4 sin( ) sin ) cosCourse: Alg. 2 & Trig. Aim: Trig. Ratioscos( for any Angle 2 2 2 -1 5 4 , 5 4 -1.2 + 2. . . Value of Sine & Cosine in Coordinate Plane y Quadrant II Quadrant I cos is – sin is + cos is + sin is + Quadrant III Quadrant IV cos is – sin is – cos is + sin is – x The reference angle: for any angle in standard position is an acute angle formed by the terminal side of the given angle and the x-axis. Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Model Problems Fill in the table Quad. Ref. sin cos a) 2360 b) 870 c) -1600 d) -36 e) 13320 f) -3960 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Regents Prep On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of sin 240o. 1 y -1 1 x -1 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Aim: What good is the Unit Circle and how does it help us to understand the Trigonometric Functions? Do Now: Use the unit circle to find: a. sin 1800 () b. cos 1800 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Model Problems Use the unit circle to find: a. sin 1800 () b. cos 1800 (-1,0) (x, y) = (-1, 0) sin 1800 = y = 0 cos 1800 = x = -1 180º - quadrantal angle Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Tan ( 1,, tan) )? radius = 1 center at (0,0) 1 y cos , sin sin tan cos (x,y) y y 1 1 -1 cos cos = 1 1 x length of the leg opposite tan length of the leg adjacent to sin y -1 tan cos x Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Trigonometric Values Quad. Sin Cos I + + + – II Sin = reference angle Sin(180– ) III – reference Sin = angle -Sin( -180) IV – Sin = reference angle -Sin(360- ) Cos = -Cos(180– ) – Cos = -Cos( -180) + Cos = Cos(360-) Aim: Trig. Ratios for any Angle Sin Cos – – – – Tan + – Tan = -Tan(180– ) + Tan = Tan( -180) – Tan = -Tan(360- ) Course: Alg. 2 & Trig. Trigonometric Values - A C T S y Q II Quadrant I 90 < < 180 2 0 < < 90 0 2 S A Sine is + All are + T x C Tangent is + Cosine is + Q III Q IV 180 < < 270 3 2 270 < < 360 3 2 2 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Need to Knows 1y When r = 1 sin = y cos = x r -1 tan = y/x Reciprocal Functions csc = 1/y sec = 1/x cot = x/y x y 1 x -1 Negative Angles Identities sin( ) sin cos( ) cos tan( ) tan denominators 0 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Model Problems y Using the unit circle, find 1 (x,y) 450 (/4) a. cos b. sin 450 c. tan 450 1 -1 450 450-450-900 triangle cos = x In a 450-450-900 triangle, the length of the hypotenuse is 2 times the length -1of a leg. 1 A 450-450-900 triangle is an isosceles right triangle. therefore x = y cos = sin length of hypo. = 2 (x) 1 2(x) 1 1 2 2 x x y 2 2 2 2 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. x Model Problems y 1 Using the unit 2 2 , (x,y) 2 2 circle, find 1 a. cos 45º(/4) b. sin 45º -1 c. tan 45º 2 xy 2 2 cos 45º = x = 2 2 sin 45º = y = 2 45º cos = x 1 -1 2 sin45 y tan45 2 cos 45 x 2 2 tan 45 = 1 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. x Trigonometric Values for Special Angles 0º 0 sin 0 cos 1 tan 0 30º /6 1 2 3 2 3 3 45º /4 60º /3 90º /2 2 2 2 2 3 2 1 2 1 1 3 UND. 0 Why is tan 90º undefined? What is the slope of a line perpendicular to the x-axis? sin y cos x sin y tan = slope cos x Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Model Problems What is the tan 135º (3/4)? • 135º is in the 2nd quadrant • 45º is reference angle (180 – 135 = 45) • tan 45º = 1 • tangent is negative in 2nd quadrant • tan 135º = -1 What is the cos 510º (17/6)? • 510º is in the 2nd quadrant (510 – 360 = 150) • 30º is reference angle (180 – 150 = 30) 3 2 • cos 30º = • cosine is negative in 2nd quadrant 3 • cos 510º = ≈ -.866… Aim: Trig. Ratios for any2 Angle Course: Alg. 2 & Trig. Model Problems 1 3 Point A ( , ) is on the unit circle whose 2 2 center is the origin. If is an angle in standard position whose terminal ray passes through point A. Find the value of of the six trig. functions. a) cos b) sin c) tan d) sec e) csc f) cot Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Model Problems Given: sin 68o = 0.9272 cos 68o = 0.3746 Find cot 112o sin tan cos A) -0.3746 B) -2.4751 C) -0.404 D) 1.0785 reference angle for 112o is 68o; WHAT 112o is in QII;ELSE DO WE KNOW? tan and cot are negative in QII 1 1 cos112 o cot112 sin112 tan112 sin112 cos112 cos68 0.3746 0.404 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. sin 68 0.9272 Model Problems Express sin 285º as the function of an angle whose measure is less than 45º. What do we know? 285º in IV quadrant the sine of a IV quadrant angle is negative reference angle for 285º is (360 – 285) = 75º -sin 75º > 45º sine and cosine are co-functions complement of 75º is 15º sin 285º = -sin 75º = -cos 15º < 45º Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Trig Functions Using Radian Measures Algebraically: Find: sin (π/3) remember: π/3 π/3 radians sin 60º = mA 0 180 0 mA in radians 60º 3 ≈ .866… 2 Using the calculator: Use the mode key: change setting from degrees to radians then hit: sin 2nd π ÷ 3 ENTER Display: .8660254083 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Un-unit circle is any angle in r1 standard position with (x, y) any point on the terminal side of and r x 2 y 2 1 -1 y 1 1 x unit-1circle cos x sin y y sin r x cos r y tan x Aim: Trig. Ratios for any Angle r csc , y 0 y r sec , x 0 x x cot , y 0 y Course: Alg. 2 & Trig. Model Problem (-3, 4) is a point on the terminal side of . Find the sine, cosine, and tangent of . r x y 2 (-3, 4) 2 r ( 3 ) 2 4 2 r 25 5 y 4 sin r 5 x 3 3 cos r 5 5 y 4 4 tan x 3 3 Aim: Trig. Ratios for any Angle 4 -5 4 2 r= 5 3 1 4 sin 53.130 5 -2 -4 Q II 180 53.130 126.897 Course: Alg. 2 & Trig. Model Problem r x2 y2 3, 1 is a point on the terminal side of . Find , the sine, cosine, and tangent of . r ( 3) 1 2 r 42 y 1 sin r 2 x 3 cos r 2 y tan 1 x 3 2 3 -1 3, 1 r=2 1 sin 300 Q III 2 7 210 or radians Aim: Trig. Ratios for any Angle 1 6 Course: Alg. 2 & Trig. Model Problem Tan = -5/4 and cos > 0, find sin and sec When tangent is negative and cosine is positive angle is found in Q IV. 4 Quadrant II sin : + cos : tan : - 2 Quadrant I sin : + cos : + tan : + 5 y 5 tan x 4 r Quadrant III sin : cos : tan : + -2 Quadrant IV sin : cos : + tan : - -4 x 2 y 2 4 2 ( 5)2 41 5 y 0.7809 sin r 41 r 41 sec 1.6008 x 4 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Model Problem The terminal side of is in quadrant I and lies on the line y = 6x. Find tan ; find . y = mx + b - slope intercept form of equation y tan m = slope of line x y = 6x m = 6 = tan tan 1 6 80.538 Aim: Trig. Ratios for any Angle QI Course: Alg. 2 & Trig. Model Problem The terminal side of is in quadrant IV and lies on the line 2x + 5y = 0. Find cos . 2 y = mx + b y x slope intercept 5 form of equation tan = m = -2/5 y sin 2 tan x 5; y 2 x cos 5 r x y 2 2 2 5 2 2 29 x 5 5 29 cos r 29 29 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Templates 1 y 1 45º -1 1 x -1 Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig.