Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
TRIGONOMETRY http://math.la.asu.edu/~tdalesan/mat170/TRIGONOMETRY.ppt Angles, Arc length, Conversions Angle measured in standard position. Initial side is the positive x – axis which is fixed. Terminal side is the ray in quadrant II, which is free to rotate about the origin. Counterclockwise rotation is positive, clockwise rotation is negative. Coterminal Angles: Angles that have the same terminal side. 60°, 420°, and –300° are all coterminal. Degrees to radians: Multiply angle by . 60 radians 180 3 180 Radians to degrees: Multiply angle by 180 . 4 45 180 Note: 1 revolution = 360° = 2π radians. Arc length = central angle x radius, or s r. Note: The central angle must be in radian measure. Right Triangle Trig Definitions B c a C • • • • • • b A sin(A) = sine of A = opposite / hypotenuse = a/c cos(A) = cosine of A = adjacent / hypotenuse = b/c tan(A) = tangent of A = opposite / adjacent = a/b csc(A) = cosecant of A = hypotenuse / opposite = c/a sec(A) = secant of A = hypotenuse / adjacent = c/b cot(A) = cotangent of A = adjacent / opposite = b/a Special Right Triangles 30° 45° 2 2 3 1 3 cos(30 ) 2 1 sin( 30 ) 2 3 tan( 30 ) 3 1 60° 1 2 3 sin( 60 ) 2 tan( 60 ) 3 cos(60 ) 1 2 2 2 sin( 45 ) 2 tan( 45 ) 1 cos( 45 ) 45° Basic Trigonometric Identities Quotient identities: tan( A) Even/Odd identities: sin( A) cos( A) cos( A) sin( A) cot( A) cos( A) cos( A) sec( A) sec( A) sin( A) sin( A) csc( A) csc( A) tan( A) tan( A) cot( A) cot( A) Even functions Odd functions Odd functions Reciprocal Identities: 1 csc( A) sin( A) 1 sin( A) csc( A) 1 sec( A) cos( A) 1 cos( A) sec( A) 1 cot( A) tan( A) 1 tan( A) cot( A) Pythagorean Identities: sin 2 ( A) cos 2 ( A) 1 tan 2 ( A) 1 sec 2 ( A) 1 cot 2 ( A) csc 2 ( A) All Students Take Calculus. Quad I Quad II Quad III cos(A)<0 sin(A)>0 tan(A)<0 sec(A)<0 csc(A)>0 cot(A)<0 cos(A)>0 sin(A)>0 tan(A)>0 sec(A)>0 csc(A)>0 cot(A)>0 cos(A)<0 sin(A)<0 tan(A)>0 sec(A)<0 csc(A)<0 cot(A)>0 cos(A)>0 sin(A)<0 tan(A)<0 sec(A)>0 csc(A)<0 cot(A)<0 Quad IV Reference Angles Quad I Quad II θ’ = 180° – θ θ’ = θ θ’ = π – θ θ’ = θ – 180° θ’ = θ – π Quad III θ’ = 360° – θ θ’ = 2π – θ Quad IV Unit circle • • • • • • • Radius of the circle is 1. x = cos(θ) 1 cos( ) 1 y = sin(θ) 1 sin( ) 1 2 2 x y 1 Pythagorean Theorem: 2 2 cos ( ) sin ( ) 1 This gives the identity: Zeros of sin(θ) are n where n is an integer. Zeros of cos(θ) are 2 n where n is an integer. Graphs of sine & cosine f ( x) A sin( Bx C ) D g ( x) A cos( Bx C ) D • • • • • Fundamental period of sine and cosine is 2π. Domain of sine and cosine is . Range of sine and cosine is [–|A|+D, |A|+D]. The amplitude of a sine and cosine graph is |A|. The vertical shift or average value of sine and cosine graph is D. • The period of sine and cosine graph is 2B . • The phase shift or horizontal shift is CB . Sine graphs y = sin(x) y = 3sin(x) y = sin(x) + 3 y = sin(3x) y = sin(x – 3) y = sin(x/3) y = 3sin(3x-9)+3 y = sin(x) Graphs of cosine y = cos(x) y = cos(x) + 3 y = 3cos(x) y = cos(3x) y = cos(x – 3) y = cos(x/3) y = 3cos(3x – 9) + 3 y = cos(x) Tangent and cotangent graphs f ( x) A tan( Bx C ) D g ( x) A cot( Bx C ) D • Fundamental period of tangent and cotangent is π. • Domain of tangent is x | x 2 n where n is an integer. • Domain of cotangent x | x n where n is an integer. • Range of tangent and cotangent is . • The period of tangent or cotangent graph is . B Graphs of tangent and cotangent y = tan(x) Vertical asymptotes at x 2 n . y = cot(x) Verrical asymptotes at x n . Graphs of secant and cosecant y = sec(x) n . Vertical asymptotes at x 2 Range: (–∞, –1] U [1, ∞) y = cos(x) y = csc(x) Vertical asymptotes at x Range: (–∞, –1] U [1, ∞) y = sin(x) n . Inverse Trigonometric Functions and Trig Equations y sin 1 ( x) arcsin( x) Domain: [–1, 1] Range: , 2 2 0 < y < 1, solutions in QI and QII. –1 < y < 0, solutions in QIII and QIV. 1 y cos ( x) arccos( x) Domain: [–1, 1] Range: [0, π] 0 < y < 1, solutions in QI and QIV. –1< y < 0, solutions in QII and QIII. y tan 1 ( x) arctan( x) Domain: Range: , 2 2 0 < y < 1, solutions in QI and QIII. –1 < y < 0, solutions in QII and QIV. Trigonometric Identities Summation & Difference Formulas sin( A B) sin( A) cos( B) cos( A) sin( B) cos( A B) cos( A) cos( B) sin( A) sin( B) tan( A) tan( B) tan( A B) 1 tan( A) tan( B) Trigonometric Identities Double Angle Formulas sin( 2 A) 2 sin( A) cos( A) cos( 2 A) cos 2 ( A) sin 2 ( A) 1 2 sin 2 ( A) 2 cos 2 ( A) 1 2 tan( A) tan( 2 A) 2 1 tan ( A) Trigonometric Identities Half Angle Formulas 1 cos( A) A sin 2 2 1 cos( A) A cos 2 2 1 cos( A) A tan 1 cos( A) 2 A The quadrant of 2 determines the sign. Law of Sines & Law of Cosines Law of sines sin( A) sin( B) sin( C ) a b c a b c sin( A) sin( B) sin( C ) Use when you have a complete ratio: SSA. Law of cosines c 2 a 2 b 2 2ab cos(C ) b 2 a 2 c 2 2ac cos( B) a 2 b 2 c 2 2bc cos( A) Use when you have SAS, SSS. Vectors • A vector is an object that has a magnitude and a direction. • Given two points P1: ( x1 , y1 ) and P2: ( x2 , y2 ) on the plane, a vector v that connects the points from P1 to P2 is v = ( x2 x1 )i + ( y2 y1 )j. • Unit vectors are vectors of length 1. • i is the unit vector in the x direction. • j is the unit vector in the y direction. • A unit vector in the direction of v is v/||v|| • A vector v can be represented in component form by v = vxi + vyj. 2 2 • The magnitude of v is ||v|| = v x v y • Using the angle that the vector makes with x-axis in standard position and the vector’s magnitude, component form can be written as v = ||v||cos(θ)i + ||v||sin(θ)j Vector Operations Scalar multiplication: A vector can be multiplied by any scalar (or number). Example: Let v = 5i + 4j, k = 7. Then kv = 7(5i + 4j) = 35i + 28j. Dot Product: Multiplication of two vectors. Let v = vxi + vyj, w = wxi + wyj. Example: Let v = 5i + 4j, w = –2i + 3j. v · w = (5)(–2) + (4)(3) = –10 + 12 = 2. v · w = vxwx + vywy Alternate Dot Product formula v · w = ||v||||w||cos(θ). The angle θ is the angle between the two vectors. v θ w Two vectors v and w are orthogonal (perpendicular) iff v · w = 0. Addition/subtraction of vectors: Add/subtract same components. Example Let v = 5i + 4j, w = –2i + 3j. v + w = (5i + 4j) + (–2i + 3j) = (5 – 2)i + (4 + 3)j = 3i + 7j. 3v – 2w = 3(5i + 4j) – 2(–2i + 3j) = (15i + 12j) + (4i – 6j) = 19i + 6j. ||3v – 2w|| = 192 62 397 19.9 Acknowledgements • Unit Circle: http://www.davidhardison.com/math/trig/unit_circle.gif • Text: Blitzer, Precalculus Essentials, Pearson Publishing, 2006.