Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
4.4 Trigonmetric functions of Any Angle Objective • Evaluate trigonometric functions of any angle • Use reference angles to evaluate trig functions Definitions of Trigonometric Functions of any Angle • Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and r x y 0 2 2 y x sin cos r r y x tan , x 0 cot y 0 x y, r r sec , x 0 csc , y 0 x y • The cosecant function is the reciprocal of the sine. • The secant function is the reciprocal of the cosine. • The cotangent function is the reciprocal of the tangent function. Example 1 • Let (-3, 4) be a point on the terminal side of θ. Find the sine, cosine, and tangent of θ. r x2 y2 r (3) 2 42 r 9 16 r 5 y 4 r 5 x 3 cos r 5 y 4 tan x 3 sin Example 2 • Let (2, 5) be a point on the terminal side of θ. Find the sine, cosine, and tangent of θ. r x2 y 2 r (2) 2 52 r 4 25 r 29 y 5 5 29 5 29 sin r 29 29 29 29 x 4 4 29 4 29 cos r 29 29 29 29 y 5 tan x 4 Signs of the Trigonometric Functions Signs of the Trig Functions A means that all trig. functions are positive. S means that all sine and cosecant functions are positive. T means that all tangent and cotangent functions are positive. C means that all cosine and secant functions are positive. Example 3 • State whether each value is positive, negative, or zero. • a) cos 75° positive • b) sin 3π 0 • c) cos 5π negative • d) sin(-3π) 0 Example 4 • Given. 4 and tan 0, find cos and csc . 5 4 y sin , implies y = 4 and r = 5 5 r since tan <0, and y = 4, is in the II quadrant sin r x2 y 2 5 x 2 42 25 x 2 16 9 x2 x 3, since is in II, x = -3 x 3 r 5 cos , csc r 5 y 4 Example 5 • Angle θ is in standard position with its terminal side in the third quadrant. Find the exact value of cos θ if 1 2 1 y sin ,implies y = -1, r = 2 2 r sin r x2 y 2 2 x 2 (1) 2 4 x2 1 3 x 2 , x 3,since is in III, x 3 x 3 cos r 2 Example 6 • Angle θ is in standard position with its terminal side in the fourth quadrant. Find the exact value of sin θ if 4 7 4 x cos ,implies x = 4, r = 7 7 r cos r x2 y 2 7 42 y 2 49 16 y 2 33 y 2 , y 33,since is in IV, y 33 sin y 33 r 7 Reference Angles • Definition • Let θ be an angle in standard position. Its reference angle is the acute angle θ’ formed by the terminal side of θ and the horizontal axis. Reference angles Example 7 • Finding reference angles. a. 213 b. 1.7 c. 144 Trigonometric Values of Common Angles Example 8 • Use the reference angle to find sin θ, and tan θ for each value of a. 150 is in II so ' 180 150 30 1 3 1 3 sin 30 , cos 30 implies sin150 , cos , 2 2 2 2 1 3 tan150 1/ 2 3/2 3 3 b. 330 is in IV so ' 360 330 30 1 3 3 sin 330 , cos 330 , tan 330 2 2 3 7 7 c. is in III, so ' 30 6 6 6 7 1 7 3 7 3 sin , cos , tan 6 2 6 2 6 3 cos θ, Example 9 For 0 2 , • Determine the values of θ for which 1 sin , looking at the unit circle 2 5 , 6 6 • If the value of one of the trig functions of any angle is known, a calculator can be used to determine the angles having that value. Example 10 • Find values of θ, where 0 • to the nearest tenth of a degree. a. cos .9266 Make sure calculator is in degrees 2nd cos(.9266) = 22.1 b. sin 0.6009 2nd sin(-0.6009) 36.9 c. tan .2309 2nd tan(.2309) 13 360 Example 11 0 2 • Find values of θ, where • To the nearest hundredth of a radian. a. tan 3.009 Make sure calculator is in radians 2nd tan(3.009) 1.25 radians b. cot 4.69 2nd tan( 1/ 4.69) .21 radians c. sec 8.2986 3nd cos(1/8.2986) 1.44 radians