Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
7.1 – Basic Trigonometric Identities and Equations Trigonometric Identities Quotient Identities sin tan cos cos cot sin Reciprocal Identities 1 sin csc 1 cos sec 1 tan cot Pythagorean Identities sin2 + cos2 = 1 tan2 + 1 = sec2 cot2 + 1 = csc2 sin2 = 1 - cos2 tan2 = sec2 - 1 cot2 = csc2 - 1 cos2 = 1 - sin2 5.4.3 Where did our pythagorean identities come from?? Do you remember the Unit Circle? • What is the equation for the unit circle? x2 + y2 = 1 • What does x = ? What does y = ? (in terms of trig functions) sin2θ + cos2θ = 1 Pythagorean Identity! Take the Pythagorean Identity and discover a new one! Hint: Try dividing everything by cos2θ sin2θ + cos2θ = 1 . cos2θ cos2θ cos2θ tan2θ + 1 = sec2θ Quotient Identity another Pythagorean Identity Reciprocal Identity Take the Pythagorean Identity and discover a new one! Hint: Try dividing everything by sin2θ sin2θ + cos2θ = 1 . sin2θ sin2θ sin2θ 1 + cot2θ = csc2θ Quotient Identity a third Pythagorean Identity Reciprocal Identity Using the identities you now know, find the trig value. 1.) If cosθ = 3/4, find secθ 2.) If cosθ = 3/5, find cscθ. sin 2 cos 2 1 1 1 4 sec cos 3 3 4 2 3 sin 2 1 5 25 9 sin 2 25 25 16 2 sin 25 4 sin 5 csc 1 1 5 sin 4 4 5 3.) sinθ = -1/3, find tanθ tan 2 1 sec 2 tan 2 1 (3) 2 tan 2 2 tan 2 8 tan 2 8 4.) secθ = -7/5, find sinθ Simplifying Trigonometric Expressions Identities can be used to simplify trigonometric expressions. Simplify. a) cos sin tan sin cos sin cos sin2 cos cos cos sin cos 1 cos 2 sec 2 cot 2 1 sin2 b) cos 2 2 sin cos 2 1 cos 2 1 2 sin cos2 1 2 sin csc 2 5.4.5 Simplifing Trigonometric Expressions c) (1 + tan x)2 - 2 sin x sec x 1 cos x sin x 2 1 2 tan x tan x 2 cos x (1 tan x) 2 sin x 2 1 tan2 x 2tanx 2 tanx sec2 x d) csc x tan x cot x 1 sin x sin x cos x cos x sin x 1 sin x sin 2 x cos 2 x sin xcos x 1 sin x 1 sin x cos x 1 sin x cos x sin x 1 cos x Simplify each expression. 1 cos x cos x sin x sin x sin cos sin 1 sin x cos x sin x cos x 1 sin sin cos 1 1 sec cos cos 2 x sin 2 x sin x sin x cos 2 x sin 2 x sin x 1 csc x sin x Simplifying trig Identity Example1: simplify tanxcosx sin x tanx cosx cos x tanxcosx = sin x Simplifying trig Identity Example2: simplify sec x csc x 1 cos sec x csc 1x sin x = 1 sinx x cos x 1 = sin x cos x = tan x Simplifying trig Identity Example2: simplify cos2x - sin2x cos x cos2x - sin 1 2x cos x = sec x Example Simplify: = cot x (csc2 x - 1) Factor out cot x = cot x (cot2 x) Use pythagorean identi = cot3 x Simplify Example Simplify: = sin x (sin x) + cos x cos x cos x 2 = sin x + (cos x)cos x cos x = sin2 x + cos2x cos x = 1 cos x = sec x Use quotient identity Simplify fraction with LCD Simplify numerator Use pythagorean iden Use reciprocal identity Your Turn! Combine fraction Simplify the numerator Use pythagorean identity Use Reciprocal Identity Practice 1 One way to use identities is to simplify expressions involving trigonometric functions. Often a good strategy for doing this is to write all trig functions in terms of sines and cosines and then simplify. Let’s see an example of this: substitute using each identity sin x tan x cos x tan x csc x Simplify: sec x simplify sin x 1 cos x sin x 1 cos x 1 cos x 1 cos x 1 1 csc x sin x 1 sec x cos x Another way to use identities is to write one function in terms of another function. Let’s see an example of this: Write the following expression in terms of only one trig function: cos x sin x 1 2 = 1 sin 2 x sin x 1 This expression involves both sine and cosine. The Fundamental Identity makes a connection between sine and cosine so we can use that and solve for cosine squared and substitute. = sin 2 x sin x 2 sin 2 x cos 2 x 1 cos 2 x 1 sin 2 x (E) Examples • Prove tan(x) cos(x) = sin(x) LS tan x cos x sin x LS cos x cos x LS sin x LS RS 20 (E) Examples • Prove tan2(x) = sin2(x) cos-2(x) RS sin 2 x cos 2 x 1 2 RS sin x 2 cos x 1 2 RS sin x cos x 2 RS sin x 2 cos x 2 sin x RS cos x RS tan 2 x RS LS 2 21 (E) Examples • Prove tan x 1 1 tan x sin x cos x 1 tan x sin x 1 sin x cos x cos x sin x cos x cos x sin x sin x sin x cos x cos x cos x sin x 2 sin x cos2 x cos x sin x 1 cos x sin x RS LS tan x LS LS LS LS LS LS 22 (E) Examples • Prove LS LS LS LS sin 2 x 1 cos x 1 cos x sin 2 x 1 cos x 1 cos2 x 1 cos x (1 cos x )(1 cos x ) (1 cos x ) 1 cos x LS RS 23