Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MTH 251 – Differential Calculus Chapter 3 – Differentiation Section 3.6 The Chain Rule Copyright © 2010 by Ron Wallace, all rights reserved. Composition of Functions • How will x turns of gear A affect gear C? x turns of A will result in 2x turns of B • B(x) = 2x = n n turns of B will result in 1/3 turn of C • C(n) = 1/3 n therefore … • C(B(x)) = 1/3(2x) = 2/3 x A B C Image: Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Note that … dB dn 2 dx dx dC 1 dn 3 dC 2 dC dn dx 3 dn dx An algebraic example … • Consider … y 4 x 2 20 x 25 (2 x 5)2 (u ) 2 Let u = 2x – 5 dy 2u 2(2 x 5) 4 x 10 du du 2 dx dy dy du 8 x 20 (4 x 10)2 dx du dx An algebraic example … with alternate notation … • Consider … f ( x) 4 x 2 20 x 25 (2 x 5)2 (u )2 g ( x ) 2 Let u = g(x) = 2x – 5 f '(u ) f '( g ( x )) 2u 2 g ( x ) 2(2 x 5) 4 x 10 g '( x ) 2 f '( x ) 8 x 20 (4 x 10)2 f '( g ( x)) g '( x) Generalizing these 2 examples … • The Chain Rule If y f ( g ( x)), then dy d f g ( x) f '( g ( x)) g '( x) dx dx • Or the alternate form … If y f (u ) and u g ( x), then dy dy du dx du dx “Differential Form” (more in section 3.11) 1 of 2 The Chain Rule Examples d f ( g ( x)) f '( g ( x)) g '( x) dx d ( x 3 3x 1)11 dx d sin( x 2 3) dx d 2 x 7 e dx 2 of 2 The Chain Rule Examples d f ( g ( x )) f '( g ( x )) g '( x) dx d tan x dx d 1 dx 2 x 5 d 3 cos(esec x ) dx Trigonometric Functions w/ Degrees • Degrees VS Radians x o • Example: 180 30o 180 x 30 = radians 6 radians d d o sin x sin x dx dx 180 cos x o cos x 180 180 180 Trigonometric Functions w/ Degrees d o o sin x cos x 180 dx d sin x cos x dx About 57.3 red cycles for the single blue cycle. x-axis: 0o to 360o y-axis: -1 to 1 One red cycle with equal x & y scales.