Download No Slide Title - University of South Alabama

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 1
Trigonometric Identities,
Inverse Functions,
and Equations
Chapter 6
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
6.1
Identities: Pythagorean and
Sum and Difference

State the Pythagorean identities.

Simplify and manipulate expressions containing
trigonometric expressions.

Use the sum and difference identities to find function
values.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Basic Identities

An identity is an equation that is true for all possible
replacements of the variables.
1
sin x 
,
csc x
1
cos x 
,
sec x
1
tan x 
,
cot x
1
csc x 
,
sin x
1
sec x 
,
cos x
1
cot x 
,
tan x
sin( x)   sin x,
cos( x)  cos x,
tan( x)   tan x,
sin x
tan x 
,
cos x
cos x
cot x 
sin x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 4
Pythagorean Identities
sin x  cos x  1,
2
2
1  cot x  csc x,
2
2
1  tan 2 x  sec 2 x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 5
Example

Multiply and simplify:
a) sin x(cot x  csc x)
Solution:
sin x(cot x  csc x)
 sin x cot x  sin x csc x
cos x
1
 sin x
 sin x
sin x
sin x
 cos x  1
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 6
Example continued
b) Factor and simplify:
Solution:
sin 4 x  sin 2 x cos 2 x
sin x  sin x cos x
4
2
2
 sin 2 x(sin 2 x  cos 2 x)
 sin 2 x  (1)
 sin 2 x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 7
Another Example

Simplify the following
trigonometric expression:
Solution:
cos x
cos x

1  sin x 1  sin x
cos x(1  sin x)
cos x(1  sin x)

(1  sin x)(1  sin x) (1  sin x)(1  sin x)
cos x  sin x cos x cos x  sin x cos x


2
1  sin 2 x
1  sin x
2cos x

1  sin 2 x
2cos x

cos 2 x
2
or 2sec x

cos x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 8
Sum and Difference Identities

There are six identities here, half of them obtained by
using the signs shown in color.
sin(u  v)  sin u cos v  cos u sin v,
cos(u  v)  cos u cos v sin u sin v,
tan u  tan v
tan(u  v) 
1 tan u tan v
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 9
Example

Find sin 75 exactly.
sin 75  sin(30  45 )
 sin 30 cos 45  cos30 sin 45
1 2
 
2 2
2


4
2

4
3 2


2 2
6
4
6
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 10
6.2
Identities: Cofunction,
Double-Angle, and Half-Angle

Use cofunction identities to derive other identities.

Use the double-angle identities to find function values of
twice an angle when one function value is known for
that angle.

Use the half-angle identities to find function values of
half an angle when one function value is known for that
angle.

Simplify trigonometric expressions using the doubleangle and half-angle identities.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Cofunction Identities




sin   x   cos x,
2



tan   x   cot x,
2



cos   x   sin x,
2



cot   x   tan x,
2



sec   x   csc x,
2



csc   x   sec x
2

Cofunction Identities for the Sine and Cosine


sin  x     cos x
2



cos  x    sin x
2

Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 12
Example



Find an identity for cot  x   .
2

Solution:


cos  x  

2


cot  x   

2


sin  x  
2

sin x

 cos x
  tan x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 13
Double-Angle Identities
sin 2 x  2sin x cos x,
2 tan x
tan 2 x 
1  tan 2 x
cos 2 x  cos 2 x  sin 2 x
 1  2sin 2 x
 2cos 2 x  1
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 14
Example

Find an equivalent expression for cos 3x.
Solution:
cos3 x  cos(2 x  x)
 cos 2 x cos x  sin 2 x sin x
 (1  2sin 2 x)cos x  2sin x cos x sin x
 cos x  2sin 2 x cos x  2sin 2 x cos x
 cos x  4sin 2 x cos x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 15
Half-Angle Identities
x
1  cos x
sin  
,
2
2
x
1  cos x
cos  
,
2
2
x
1  cos x
tan  
2
1  cos x
sin x
1  cos x


1  cos x
sin x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 16
Example

Find sin ( /8) exactly.
Solution:

sin 4  
2

1  cos

4
2
2
2
1
2
2 2

2
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 17
Another Example

x
Simplify tan tan x  1.
2
x
1  cos x sin x
tan
tan
x

1


1
Solution:
2
sin x cos x
sin x(1  cos x)

1
sin x cos x
1  cos x

1
cos x
1
cos x


1
cos x cos x
 sec x  1  1
 sec x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 18
6.3
Proving
Trigonometric Identities

Prove identities using other identities.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
The Logic of Proving Identities

Method 1: Start with either the left or the right side of
the equation and obtain the other side.

Method 2: Work with each side separately until you
obtain the same expression.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 20
Hints for Proving Identities






Use method 1 or 2.
Work with the more complex side first.
Carry out any algebraic manipulations, such as adding,
subtracting, multiplying, or factoring.
Multiplying by 1 can be helpful when rational
expressions are involved.
Converting all expressions to sines and cosines is often
helpful.
Try something! Put your pencil to work and get
involved. You will be amazed at how often this leads to
success.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 21
Example

Prove the identity (tan 2 x  1)(cos 2 x  1)   tan 2 x .
Solution: Start with the left side.
(tan 2 x  1)(cos 2 x  1)   tan 2 x
 sin 2 x 
2
2
x
tan


1)

x
(cos
1



2
 cos x 
sin 2 x
2
2
2
x
tan


1

x
cos

sin x 
2
cos x
sin 2 x
2
2
2
x
tan


1

sin x  cos x 
2
cos x
sin 2 x
2
1

1


tan
x
2
cos x
sin 2 x
2



tan
x
2
cos x
 tan 2 x   tan 2 x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 22
Another Example

Prove the identity:
1
 csc x  sin x
sec x tan x
Solution: Start with the
right side.
1
 csc x  sin x
sec x tan x
1

 sin x
sin x
1
sin 2 x


sin x sin x

Solution continued
1
1  sin 2 x

sec x tan x
sin x
cos 2 x

sin x
cos x cos x


sin x 1
 cot x  cos x
1
1


tan x sec x
1
1

sec x tan x sec x tan x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 23
Example

tan x  cot y
 tan y  cot x.
Prove the identity
tan x cot y

Solution: Start with the left side.
tan x  cot y
 tan y  cot x
tan x cot y
tan x
cot y


tan x cot y tan x cot y
1
1


cot y tan x
tan y  cot x  tan y  cot x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 24
6.4
Inverses of the Trigonometric
Functions

Find values of the inverse trigonometric functions.

Simplify expressions such as sin (sin–1 x) and
sin–1 (sin x).

Simplify expressions involving compositions such as
sin (cos–1 21 ) without using a calculator.

Simplify expressions such as sin arctan (a/b) by
making a drawing and reading off appropriate ratios.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Inverse Trigonometric Functions
Function
Domain
Range
y  sin 1 x
 arcsin x, where x  sin y
[1, 1]
[ / 2,  / 2]
y  cos 1 x
 arccos x, where x  cos y
[1, 1]
[0, ]
y  tan 1 x
 arctan x, where x  tan y
(, )
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
  / 2, / 2 
Slide 6- 26
Example

Find each of the
following:
a) sin 1
Solution: a)
 Find  such that
3
sin  
2
3
2

3
1
b) cos  

 2 


c) tan 1 (1)
 would represent a 60°
or 120° angle.
3
sin
 60 and 120
2

2
or
and
3
3
1
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 27
Solution continued
b) Find  such that
 3
cos 
2



 would represent a 30°
reference angle in the 2nd and
3rd quadrants.
Therefore,  = 150° or 210°

3
cos  
  150 and 210
 2 
5
7
or
and
6
6
1
c) Find  such that
tan   1.



This means that the sine and
cosine of  must be
opposites.
Therefore,  must be 135°
and 315°.
tan 1 (1)  135 and 315
3
7
or
and
4
4
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 28
Domains and Ranges
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 29
Composition of Trigonometric Functions
sin(sin 1 x)  x,
for all x in the domain of sin 1 .
cos(cos 1 x)  x,
for all x in the domain of cos 1 .
tan(tan 1 x)  x,
for all x in the domain of tan 1.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 30
Examples

Simplify:

 1  1  
sin  sin    
 2 


Since 1/2 is in the
domain of sin–1,
 1  1  
1
sin  sin      
2
 2 

Simplify:
 1  3 2  
cos  cos 
 

 2 


3 2
Since
is not in the
2
domain of cos–1,
 1  3 2  
cos  cos 
 

 2 

does not exist.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 31
Special Cases
sin 1 (sin x)  x,
for all x in the range of sin 1 .
cos 1 (cos x)  x,
for all x in the range of cos 1 .
tan 1 (tan x)  x,
for all x in the range of tan 1.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 32
Examples

Simplify:

 
sin 1  sin 
2


Since /2 is in the range
of sin–1,
  
sin 1  sin  
2 2

Simplify:


tan  tan 
3

1

Since /3 is in the range
of tan–1,
 

tan 1  tan  
3 3

Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 33
More Examples

Simplify:

 1 
sin  cos 1    
 2 

Solution:
2
 1
cos 1     120 or
3
 2
2
3
sin

3
2

Simplify:
  2  
tan 1  sin  

3

 
Solution:
2
3
sin

3
2

3
1
tan  
  40.9
 2 
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 34
6.5
Solving
Trigonometric Equations

Solve trigonometric equations.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Solving Trigonometric Equations

Trigonometric Equation—an equation that contains a
trigonometric expression with a variable.

To solve a trigonometric equation, find all values of the
variable that make the equation true.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 36
Example


Solve 2 sin x  1 = 0.
Solution: First, solve for
sin x on the unit circle.
2sin x  1  0
2sin x  1

1
sin x 
2
6
1
x  sin 1  
 2
x  30 ,150 or
The values /6 and
5/6 plus any multiple
of 2 will satisfy the
equation. Thus the
solutions are
 5
 2 k and
5
 2 k
6
where k is any integer.
,
6 6
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 37
Graphical Solution

We can use either the Intersect method or the Zero
method to solve trigonometric equations. We graph the
equations y1 = 2 sin x  1 and y2 = 0.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 38
Another Example

Solve 2 cos2 x  1 = 0.
Solution: First, solve for cos x on the unit circle.
x  45 ,135 , 225
 3 5
or ,
,
,
4 4
4
 3
2cos 2 x  1  0
2cos 2 x  1
1
2
cos x 
2
cos x  
The values
1
2
2
cos x  
2
,
,
,315
7
4
5 7
,
4 4
4
4
any multiple of 2 will satisfy
the equation.
plus
The solution can be written
as

4


2
k where k is any integer.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 39
Graphical Solution


Solve 2 cos2 x  1 = 0.
One graphical solution shown.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 40
One More Example

Solve 2 cos x + sec x = 0
Solution:
2cos x  sec x  0
1
2cos x 
0
cos x
1
2cos 2 x  1  0

cos x
1
0
cos x
1
0
cos x
or
Since neither factor of the equation
can equal zero, the equation has no
solution.

Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
2cos 2 x  1  0
2cos 2 x  1
1
2
cos x 
2
1
cos x   
2
1
cos x  
2
Slide 6- 41
Graphical Solution

2 cos x + sec x
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 42
Last Example


Solve 2 sin2 x + 3sin x + 1 = 0.
Solution: First solve for sin x on the unit circle.
2sin x  3sin x  1  0
(2sin x  1)(sin x  1)  0
2
2sin x  1  0
2sin x  1
1
sin x  
2
1
1 
x  sin   
 2
7 11
x
,
6 6
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 43
Last Example continued

sin x  1  0
sin x  1

One Graphical Solution
1
x  sin ( 1)
3
x
2

x
7
11
3
 2 k ,
 2 k ,
 2 k
6
6
2
where k is any integer.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 6- 44
Related documents